{-# OPTIONS --sized-types #-}
module A201605.AbelChapmanExtended.Renaming.Normalization1 where
open import Relation.Binary.PropositionalEquality using (_≡_ ; refl)
open import A201605.AbelChapmanExtended.Delay
open import A201605.AbelChapmanExtended.StrongBisimilarity
open import A201605.AbelChapmanExtended.Syntax
open import A201605.AbelChapmanExtended.OPE
open import A201605.AbelChapmanExtended.Renaming.Syntax
open import A201605.AbelChapmanExtended.Normalization
ren-lookup : ∀ {Γ Δ Δ′ a} (η : Δ′ ⊇ Δ) (x : Var Γ a) (ρ : Env Δ Γ) →
ren-val η (lookup x ρ) ≡ lookup x (ren-env η ρ)
ren-lookup η top (ρ , v) = refl
ren-lookup η (pop x) (ρ , v) = ren-lookup η x ρ
ren-π₁-reduce : ∀ {i Δ Δ′ a b} (η : Δ′ ⊇ Δ) (v : Val Δ (a ∧ b)) →
ren-val η <$> π₁-reduce v ≈⟨ i ⟩≈ π₁-reduce (ren-val η v)
ren-π₁-reduce η (ne v) = ≈refl
ren-π₁-reduce η (pair v w) = ≈refl
ren-π₂-reduce : ∀ {i Δ Δ′ a b} (η : Δ′ ⊇ Δ) (v : Val Δ (a ∧ b)) →
ren-val η <$> π₂-reduce v ≈⟨ i ⟩≈ π₂-reduce (ren-val η v)
ren-π₂-reduce η (ne v) = ≈refl
ren-π₂-reduce η (pair v w) = ≈refl
ren-ω-reduce : ∀ {i Δ Δ′ a} (η : Δ′ ⊇ Δ) (v : Val Δ ⊥) →
ren-val η <$> ω-reduce v ≈⟨ i ⟩≈ ω-reduce {a = a} (ren-val η v)
ren-ω-reduce η (ne v) = ≈refl
mutual
ren-eval : ∀ {i Γ Δ Δ′ a} (η : Δ′ ⊇ Δ) (t : Tm Γ a) (ρ : Env Δ Γ) →
ren-val η <$> eval t ρ ≈⟨ i ⟩≈ eval t (ren-env η ρ)
ren-eval η (loop t) ρ =
proof
ren-val η <$> (v ← eval t ρ ⁏
ω-reduce v)
≈⟨ ⋘ eval t ρ ⟩
v ← eval t ρ ⁏
ren-val η <$> ω-reduce v
≈⟨ v ⇚ eval t ρ ⁏
ren-ω-reduce η v ⟩
v ← eval t ρ ⁏
ω-reduce (ren-val η v)
≈⟨ ⋙ eval t ρ ⟩
v′ ← ren-val η <$> eval t ρ ⁏
ω-reduce v′
≈⟨ ∵ ren-eval η t ρ ⟩
v′ ← eval t (ren-env η ρ) ⁏
ω-reduce v′
∎
where open ≈-Reasoning
ren-eval η (var x) ρ rewrite ren-lookup η x ρ = ≈now (lookup x (ren-env η ρ))
ren-eval η (lam t) ρ = ≈now (lam t (ren-env η ρ))
ren-eval η (app t u) ρ =
proof
ren-val η <$> (v ← eval t ρ ⁏
w ← eval u ρ ⁏
β-reduce v w)
≈⟨ ⋘ eval t ρ ⟩
v ← eval t ρ ⁏
ren-val η <$> (w ← eval u ρ ⁏
β-reduce v w)
≈⟨ v ⇚ eval t ρ ⁏
⋘ eval u ρ ⟩
v ← eval t ρ ⁏
w ← eval u ρ ⁏
ren-val η <$> β-reduce v w
≈⟨ v ⇚ eval t ρ ⁏
w ⇚ eval u ρ ⁏
ren-β-reduce η v w ⟩
v ← eval t ρ ⁏
w ← eval u ρ ⁏
β-reduce (ren-val η v) (ren-val η w)
≈⟨ v ⇚ eval t ρ ⁏
⋙ eval u ρ ⟩
v ← eval t ρ ⁏
w′ ← ren-val η <$> eval u ρ ⁏
β-reduce (ren-val η v) w′
≈⟨ v ⇚ eval t ρ ⁏
∵ ren-eval η u ρ ⟩
v ← eval t ρ ⁏
w′ ← eval u (ren-env η ρ) ⁏
β-reduce (ren-val η v) w′
≈⟨ ⋙ eval t ρ ⟩
v′ ← ren-val η <$> eval t ρ ⁏
w′ ← eval u (ren-env η ρ) ⁏
β-reduce v′ w′
≈⟨ ∵ ren-eval η t ρ ⟩
v′ ← eval t (ren-env η ρ) ⁏
w′ ← eval u (ren-env η ρ) ⁏
β-reduce v′ w′
∎
where open ≈-Reasoning
ren-eval η (pair t u) ρ =
proof
ren-val η <$> (v ← eval t ρ ⁏
w ← eval u ρ ⁏
now (pair v w))
≈⟨ ⋘ eval t ρ ⟩
v ← eval t ρ ⁏
ren-val η <$> (w ← eval u ρ ⁏
now (pair v w))
≈⟨ v ⇚ eval t ρ ⁏
⋘ eval u ρ ⟩
v ← eval t ρ ⁏
w ← eval u ρ ⁏
ren-val η <$> now (pair v w)
≈⟨ v ⇚ eval t ρ ⁏
w ⇚ eval u ρ ⁏
≈now (pair (ren-val η v) (ren-val η w)) ⟩
v ← eval t ρ ⁏
w ← eval u ρ ⁏
now (pair (ren-val η v) (ren-val η w))
≈⟨ v ⇚ eval t ρ ⁏
⋙ eval u ρ ⟩
v ← eval t ρ ⁏
w′ ← ren-val η <$> eval u ρ ⁏
now (pair (ren-val η v) w′)
≈⟨ v ⇚ eval t ρ ⁏
∵ ren-eval η u ρ ⟩
v ← eval t ρ ⁏
w′ ← eval u (ren-env η ρ) ⁏
now (pair (ren-val η v) w′)
≈⟨ ⋙ eval t ρ ⟩
v′ ← ren-val η <$> eval t ρ ⁏
w′ ← eval u (ren-env η ρ) ⁏
now (pair v′ w′)
≈⟨ ∵ ren-eval η t ρ ⟩
v′ ← eval t (ren-env η ρ) ⁏
w′ ← eval u (ren-env η ρ) ⁏
now (pair v′ w′)
∎
where open ≈-Reasoning
ren-eval η (fst t) ρ =
proof
ren-val η <$> (v ← eval t ρ ⁏
π₁-reduce v)
≈⟨ ⋘ eval t ρ ⟩
v ← eval t ρ ⁏
ren-val η <$> π₁-reduce v
≈⟨ v ⇚ eval t ρ ⁏
ren-π₁-reduce η v ⟩
v ← eval t ρ ⁏
π₁-reduce (ren-val η v)
≈⟨ ⋙ eval t ρ ⟩
v′ ← ren-val η <$> eval t ρ ⁏
π₁-reduce v′
≈⟨ ∵ ren-eval η t ρ ⟩
v′ ← eval t (ren-env η ρ) ⁏
π₁-reduce v′
∎
where open ≈-Reasoning
ren-eval η (snd t) ρ =
proof
ren-val η <$> (v ← eval t ρ ⁏
π₂-reduce v)
≈⟨ ⋘ eval t ρ ⟩
v ← eval t ρ ⁏
ren-val η <$> π₂-reduce v
≈⟨ v ⇚ eval t ρ ⁏
ren-π₂-reduce η v ⟩
v ← eval t ρ ⁏
π₂-reduce (ren-val η v)
≈⟨ ⋙ eval t ρ ⟩
v′ ← ren-val η <$> eval t ρ ⁏
π₂-reduce v′
≈⟨ ∵ ren-eval η t ρ ⟩
v′ ← eval t (ren-env η ρ) ⁏
π₂-reduce v′
∎
where open ≈-Reasoning
ren-eval η unit ρ = ≈now unit
ren-∞eval : ∀ {i Γ Δ Δ′ a} (η : Δ′ ⊇ Δ) (t : Tm Γ a) (ρ : Env Δ Γ) →
ren-val η ∞<$> ∞eval t ρ ∞≈⟨ i ⟩≈ ∞eval t (ren-env η ρ)
≈force (ren-∞eval η t ρ) = ren-eval η t ρ
ren-β-reduce : ∀ {i Δ Δ′ a b} (η : Δ′ ⊇ Δ) (v : Val Δ (a ⇒ b)) (w : Val Δ a) →
ren-val η <$> β-reduce v w ≈⟨ i ⟩≈ β-reduce (ren-val η v) (ren-val η w)
ren-β-reduce η (ne v) w = ≈refl
ren-β-reduce η (lam t ρ) w = ≈later (ren-∞eval η t (ρ , w))