module A201605.AbelChapmanExtended.OPE where
open import Function using (_∘_)
open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; cong)
open import A201605.AbelChapmanExtended.Syntax
data _⊇_ : (Γ Γ′ : Cx) → Set where
id : ∀ {Γ} → Γ ⊇ Γ
weak : ∀ {Γ Γ′ a} → Γ′ ⊇ Γ → (Γ′ , a) ⊇ Γ
lift : ∀ {Γ Γ′ a} → Γ′ ⊇ Γ → (Γ′ , a) ⊇ (Γ , a)
_•_ : ∀ {Γ Γ′ Γ″} → Γ″ ⊇ Γ′ → Γ′ ⊇ Γ → Γ″ ⊇ Γ
id • η = η
weak η′ • η = weak (η′ • η)
lift η′ • id = lift η′
lift η′ • weak η = weak (η′ • η)
lift η′ • lift η = lift (η′ • η)
η•id : ∀ {Γ Γ′} (η : Γ′ ⊇ Γ) → η • id ≡ η
η•id id = refl
η•id (weak η) = cong weak (η•id η)
η•id (lift η) = refl
id•η : ∀ {Γ Γ′} (η : Γ′ ⊇ Γ) → id • η ≡ η
id•η id = refl
id•η (weak η) = refl
id•η (lift η) = cong lift (id•η η)
•assoc : ∀ {Γ‴ Γ″ Γ′ Γ} (η″ : Γ‴ ⊇ Γ″) (η′ : Γ″ ⊇ Γ′) (η : Γ′ ⊇ Γ) →
(η″ • η′) • η ≡ η″ • (η′ • η)
•assoc id η′ η = refl
•assoc (weak η″) η′ η = cong weak (•assoc η″ η′ η)
•assoc (lift η″) id η = refl
•assoc (lift η″) (weak η′) η = cong weak (•assoc η″ η′ η)
•assoc (lift η″) (lift η′) id = refl
•assoc (lift η″) (lift η′) (weak η) = cong weak (•assoc η″ η′ η)
•assoc (lift η″) (lift η′) (lift η) = cong lift (•assoc η″ η′ η)