module A201605.AbelChapmanExtended.Delay where

open import Category.Monad public using (RawMonad)
open import Data.Maybe using (Maybe ; just ; nothing)
open import Data.Nat using ( ; zero ; suc)
open import Size using (Size ; Size<_ ; )




mutual
  data Delay (i : Size) (A : Set) : Set where
    now   : (a : A)            Delay i A
    later : (a∞ : ∞Delay i A)  Delay i A

  record ∞Delay (i : Size) (A : Set) : Set where
    coinductive
    field
      force : {j : Size< i}  Delay j A

open ∞Delay public


mutual
  bind :  {i A B}  Delay i A  (A  Delay i B)  Delay i B
  bind (now a)    f = f a
  bind (later a∞) f = later (∞bind a∞ f)

  ∞bind :  {i A B}  ∞Delay i A  (A  Delay i B)  ∞Delay i B
  force (∞bind a∞ f) = bind (force a∞) f


delayMonad :  {i}  RawMonad (Delay i)
delayMonad {i} = record
  { return = now
  ; _>>=_  = bind {i}
  }

module _ {i : Size} where
  open module DelayMonad = RawMonad (delayMonad {i = i}) public
    using (_>>=_) renaming (_⊛_ to _<*>_)


_<$>_ :  {i A B}  (A  B)  Delay i A  Delay i B
f <$> a? = a? >>= λ a  now (f a)

_∞>>=_ :  {i A B}  ∞Delay i A  (A  Delay i B)  ∞Delay i B
_∞>>=_ = ∞bind

_∞<$>_ :  {i A B}  (A  B)  ∞Delay i A  ∞Delay i B
f ∞<$> a∞ = a∞ ∞>>= λ a  now (f a)

infixl 1 _∞>>=_
infixl 15 _<$>_ _∞<$>_




syntax bind  a?  a  b?) = a   a?  b?
syntax ∞bind a∞  a  b?) = a ∞← a∞  b?

infix 10 bind ∞bind