module A201605.AbelChapmanExtended.Delay where open import Category.Monad public using (RawMonad) open import Data.Maybe using (Maybe ; just ; nothing) open import Data.Nat using (ℕ ; zero ; suc) open import Size using (Size ; Size<_ ; ∞) mutual data Delay (i : Size) (A : Set) : Set where now : (a : A) → Delay i A later : (a∞ : ∞Delay i A) → Delay i A record ∞Delay (i : Size) (A : Set) : Set where coinductive field force : {j : Size< i} → Delay j A open ∞Delay public mutual bind : ∀ {i A B} → Delay i A → (A → Delay i B) → Delay i B bind (now a) f = f a bind (later a∞) f = later (∞bind a∞ f) ∞bind : ∀ {i A B} → ∞Delay i A → (A → Delay i B) → ∞Delay i B force (∞bind a∞ f) = bind (force a∞) f delayMonad : ∀ {i} → RawMonad (Delay i) delayMonad {i} = record { return = now ; _>>=_ = bind {i} } module _ {i : Size} where open module DelayMonad = RawMonad (delayMonad {i = i}) public using (_>>=_) renaming (_⊛_ to _<*>_) _<$>_ : ∀ {i A B} → (A → B) → Delay i A → Delay i B f <$> a? = a? >>= λ a → now (f a) _∞>>=_ : ∀ {i A B} → ∞Delay i A → (A → Delay i B) → ∞Delay i B _∞>>=_ = ∞bind _∞<$>_ : ∀ {i A B} → (A → B) → ∞Delay i A → ∞Delay i B f ∞<$> a∞ = a∞ ∞>>= λ a → now (f a) infixl 1 _∞>>=_ infixl 15 _<$>_ _∞<$>_ syntax bind a? (λ a → b?) = a ← a? ⁏ b? syntax ∞bind a∞ (λ a → b?) = a ∞← a∞ ⁏ b? infix 10 bind ∞bind