module A201605.AbelChapmanExtended.StrongBisimilarity where open import Function using (_∘_) open import Relation.Binary using (Setoid) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; sym ; trans) open import Size using (Size ; Size<_ ; ∞) import Relation.Binary.PreorderReasoning as PR open import A201605.AbelChapmanExtended.Delay mutual data _≈_ {i A} : Delay ∞ A → Delay ∞ A → Set where ≈now : (a : A) → now a ≈ now a ≈later : ∀ {a∞ a∞′} → a∞ ∞≈⟨ i ⟩≈ a∞′ → later a∞ ≈ later a∞′ _≈⟨_⟩≈_ : ∀ {A} → Delay ∞ A → Size → Delay ∞ A → Set _≈⟨_⟩≈_ {A} a? i a?′ = _≈_ {i} {A} a? a?′ record _∞≈⟨_⟩≈_ {A} (a∞ : ∞Delay ∞ A) (i : Size) (a∞′ : ∞Delay ∞ A) : Set where coinductive field ≈force : {j : Size< i} → force a∞ ≈⟨ j ⟩≈ force a∞′ _∞≈_ : ∀ {i A} → ∞Delay ∞ A → ∞Delay ∞ A → Set _∞≈_ {i} {A} a∞ a∞′ = _∞≈⟨_⟩≈_ {A} a∞ i a∞′ infix 5 _≈⟨_⟩≈_ _∞≈⟨_⟩≈_ _∞≈_ open _∞≈⟨_⟩≈_ public mutual ≈refl : ∀ {i A} {a? : Delay ∞ A} → a? ≈⟨ i ⟩≈ a? ≈refl {a? = now a} = ≈now a ≈refl {a? = later a∞} = ≈later ∞≈refl ∞≈refl : ∀ {i A} {a∞ : ∞Delay ∞ A} → a∞ ∞≈⟨ i ⟩≈ a∞ ≈force (∞≈refl) = ≈refl mutual ≈sym : ∀ {i A} {a? a?′ : Delay ∞ A} → a? ≈⟨ i ⟩≈ a?′ → a?′ ≈⟨ i ⟩≈ a? ≈sym (≈now a) = ≈now a ≈sym (≈later a≈a′) = ≈later (∞≈sym a≈a′) ∞≈sym : ∀ {i A} {a∞ a∞′ : ∞Delay ∞ A} → a∞ ∞≈⟨ i ⟩≈ a∞′ → a∞′ ∞≈⟨ i ⟩≈ a∞ ≈force (∞≈sym a≈a′) = ≈sym (≈force a≈a′) mutual ≈trans : ∀ {i A} {a? a?′ a?″ : Delay ∞ A} → a? ≈⟨ i ⟩≈ a?′ → a?′ ≈⟨ i ⟩≈ a?″ → a? ≈⟨ i ⟩≈ a?″ ≈trans (≈now a) (≈now .a) = ≈now a ≈trans (≈later a≈a′) (≈later a′≈a″) = ≈later (∞≈trans a≈a′ a′≈a″) ∞≈trans : ∀ {i A} {a∞ a∞′ a∞″ : ∞Delay ∞ A} → a∞ ∞≈⟨ i ⟩≈ a∞′ → a∞′ ∞≈⟨ i ⟩≈ a∞″ → a∞ ∞≈⟨ i ⟩≈ a∞″ ≈force (∞≈trans a≈a′ a′≈a″) = ≈trans (≈force a≈a′) (≈force a′≈a″) mutual bind-assoc : ∀ {i A B C} (a? : Delay ∞ A) → {f : A → Delay ∞ B} {g : B → Delay ∞ C} → ((a? >>= f) >>= g) ≈⟨ i ⟩≈ (a? >>= λ a → f a >>= g) bind-assoc (now a) = ≈refl bind-assoc (later a∞) = ≈later (∞bind-assoc a∞) ∞bind-assoc : ∀ {i A B C} (a∞ : ∞Delay ∞ A) → {f : A → Delay ∞ B} {g : B → Delay ∞ C} → ((a∞ ∞>>= f) ∞>>= g) ∞≈⟨ i ⟩≈ (a∞ ∞>>= λ a → f a >>= g) ≈force (∞bind-assoc a∞) = bind-assoc (force a∞) mutual bind-cong-l : ∀ {i A B} {a? a?′ : Delay ∞ A} → a? ≈⟨ i ⟩≈ a?′ → {f : A → Delay ∞ B} → (a? >>= f) ≈⟨ i ⟩≈ (a?′ >>= f) bind-cong-l (≈now a) = ≈refl bind-cong-l (≈later a≈a′) = ≈later (∞bind-cong-l a≈a′) ∞bind-cong-l : ∀ {i A B} {a∞ a∞′ : ∞Delay ∞ A} → a∞ ∞≈⟨ i ⟩≈ a∞′ → {f : A → Delay ∞ B} → (a∞ ∞>>= f) ∞≈⟨ i ⟩≈ (a∞′ ∞>>= f) ≈force (∞bind-cong-l a≈a′) = bind-cong-l (≈force a≈a′) mutual bind-cong-r : ∀ {i A B} (a? : Delay ∞ A) {f g : A → Delay ∞ B} → (∀ a → (f a) ≈⟨ i ⟩≈ (g a)) → (a? >>= f) ≈⟨ i ⟩≈ (a? >>= g) bind-cong-r (now a) h = h a bind-cong-r (later a∞) h = ≈later (∞bind-cong-r a∞ h) ∞bind-cong-r : ∀ {i A B} (a∞ : ∞Delay ∞ A) {f g : A → Delay ∞ B} → (∀ a → (f a) ≈⟨ i ⟩≈ (g a)) → (a∞ ∞>>= f) ∞≈⟨ i ⟩≈ (a∞ ∞>>= g) ≈force (∞bind-cong-r a∞ h) = bind-cong-r (force a∞) h ≈setoid : (i : Size) (A : Set) → Setoid _ _ ≈setoid i A = record { Carrier = Delay ∞ A ; _≈_ = _≈_ {i} ; isEquivalence = record { refl = ≈refl ; sym = ≈sym ; trans = ≈trans } } ∞≈setoid : (i : Size) (A : Set) → Setoid _ _ ∞≈setoid i A = record { Carrier = ∞Delay ∞ A ; _≈_ = _∞≈_ {i} ; isEquivalence = record { refl = ∞≈refl ; sym = ∞≈sym ; trans = ∞≈trans } } module ≈-Reasoning {i A} where open PR (Setoid.preorder (≈setoid i A)) public using (_∎) renaming (_≈⟨⟩_ to _≡⟨⟩_ ; _≈⟨_⟩_ to _≡⟨_⟩_ ; _∼⟨_⟩_ to _≈⟨_⟩_ ; begin_ to proof_) module ∞≈-Reasoning {i A} where open PR (Setoid.preorder (∞≈setoid i A)) public using (_∎) renaming (_≈⟨⟩_ to _≡⟨⟩_ ; _≈⟨_⟩_ to _≡⟨_⟩_ ; _∼⟨_⟩_ to _∞≈⟨_⟩_ ; begin_ to proof_) sym-bind-assoc : ∀ {i A B C} (a? : Delay ∞ A) → {f : A → Delay ∞ B} {g : B → Delay ∞ C} → (a? >>= λ a → f a >>= g) ≈⟨ i ⟩≈ ((a? >>= f) >>= g) sym-bind-assoc a? = ≈sym (bind-assoc a?) syntax bind-assoc a? = ⋘ a? syntax sym-bind-assoc a? = ⋙ a? syntax bind-cong-r a? (λ a → b?) = a ⇚ a? ⁏ b? syntax bind-cong-l a≈a′ = ∵ a≈a′ infix 35 bind-assoc sym-bind-assoc infix 30 bind-cong-r bind-cong-l