module A201605.AbelChapmanExtended.StrongBisimilarity where

open import Function using (_∘_)
open import Relation.Binary using (Setoid)
open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; sym ; trans)
open import Size using (Size ; Size<_ ; )
import Relation.Binary.PreorderReasoning as PR

open import A201605.AbelChapmanExtended.Delay




mutual
  data _≈_ {i A} : Delay  A  Delay  A  Set where
    ≈now   :                (a : A)          now a     now a
    ≈later :  {a∞ a∞′}  a∞ ∞≈⟨ i ⟩≈ a∞′  later a∞  later a∞′

  _≈⟨_⟩≈_ :  {A}  Delay  A  Size  Delay  A  Set
  _≈⟨_⟩≈_ {A} a? i a?′ = _≈_ {i} {A} a? a?′

  record _∞≈⟨_⟩≈_ {A} (a∞ : ∞Delay  A) (i : Size) (a∞′ : ∞Delay  A) : Set where
    coinductive
    field
      ≈force : {j : Size< i}  force a∞ ≈⟨ j ⟩≈ force a∞′

_∞≈_ :  {i A}  ∞Delay  A  ∞Delay  A  Set
_∞≈_ {i} {A} a∞ a∞′ = _∞≈⟨_⟩≈_ {A} a∞ i a∞′

infix 5 _≈⟨_⟩≈_ _∞≈⟨_⟩≈_ _∞≈_

open _∞≈⟨_⟩≈_ public


mutual
  ≈refl :  {i A} {a? : Delay  A}  a? ≈⟨ i ⟩≈ a?
  ≈refl {a? = now a}    = ≈now a
  ≈refl {a? = later a∞} = ≈later ∞≈refl

  ∞≈refl :  {i A} {a∞ : ∞Delay  A}  a∞ ∞≈⟨ i ⟩≈ a∞
  ≈force (∞≈refl) = ≈refl


mutual
  ≈sym :  {i A} {a? a?′ : Delay  A}  a? ≈⟨ i ⟩≈ a?′  a?′ ≈⟨ i ⟩≈ a?
  ≈sym (≈now a)      = ≈now a
  ≈sym (≈later a≈a′) = ≈later (∞≈sym a≈a′)

  ∞≈sym :  {i A} {a∞ a∞′ : ∞Delay  A}  a∞ ∞≈⟨ i ⟩≈ a∞′  a∞′ ∞≈⟨ i ⟩≈ a∞
  ≈force (∞≈sym a≈a′) = ≈sym (≈force a≈a′)


mutual
  ≈trans :  {i A} {a? a?′ a?″ : Delay  A} 
           a? ≈⟨ i ⟩≈ a?′  a?′ ≈⟨ i ⟩≈ a?″  a? ≈⟨ i ⟩≈ a?″
  ≈trans (≈now a)      (≈now .a)      = ≈now a
  ≈trans (≈later a≈a′) (≈later a′≈a″) = ≈later (∞≈trans a≈a′ a′≈a″)

  ∞≈trans :  {i A} {a∞ a∞′ a∞″ : ∞Delay  A} 
            a∞ ∞≈⟨ i ⟩≈ a∞′  a∞′ ∞≈⟨ i ⟩≈ a∞″  a∞ ∞≈⟨ i ⟩≈ a∞″
  ≈force (∞≈trans a≈a′ a′≈a″) = ≈trans (≈force a≈a′) (≈force a′≈a″)


mutual
  bind-assoc :  {i A B C} (a? : Delay  A) 
               {f : A  Delay  B} {g : B  Delay  C} 
               ((a? >>= f) >>= g) ≈⟨ i ⟩≈ (a? >>= λ a  f a >>= g)
  bind-assoc (now a)    = ≈refl
  bind-assoc (later a∞) = ≈later (∞bind-assoc a∞)

  ∞bind-assoc :  {i A B C} (a∞ : ∞Delay  A) 
                {f : A  Delay  B} {g : B  Delay  C} 
                ((a∞ ∞>>= f) ∞>>= g) ∞≈⟨ i ⟩≈ (a∞ ∞>>= λ a  f a >>= g)
  ≈force (∞bind-assoc a∞) = bind-assoc (force a∞)


mutual
  bind-cong-l :  {i A B} {a? a?′ : Delay  A} 
                a? ≈⟨ i ⟩≈ a?′  {f : A  Delay  B} 
                (a? >>= f) ≈⟨ i ⟩≈ (a?′ >>= f)
  bind-cong-l (≈now a)      = ≈refl
  bind-cong-l (≈later a≈a′) = ≈later (∞bind-cong-l a≈a′)

  ∞bind-cong-l :  {i A B} {a∞ a∞′ : ∞Delay  A} 
                 a∞ ∞≈⟨ i ⟩≈ a∞′  {f : A  Delay  B} 
                 (a∞ ∞>>= f) ∞≈⟨ i ⟩≈ (a∞′ ∞>>= f)
  ≈force (∞bind-cong-l a≈a′) = bind-cong-l (≈force a≈a′)


mutual
  bind-cong-r :  {i A B} (a? : Delay  A) {f g : A  Delay  B} 
                (∀ a  (f a) ≈⟨ i ⟩≈ (g a)) 
                (a? >>= f) ≈⟨ i ⟩≈ (a? >>= g)
  bind-cong-r (now a)    h = h a
  bind-cong-r (later a∞) h = ≈later (∞bind-cong-r a∞ h)

  ∞bind-cong-r :  {i A B} (a∞ : ∞Delay  A) {f g : A  Delay  B} 
                 (∀ a  (f a) ≈⟨ i ⟩≈ (g a)) 
                 (a∞ ∞>>= f) ∞≈⟨ i ⟩≈ (a∞ ∞>>= g)
  ≈force (∞bind-cong-r a∞ h) = bind-cong-r (force a∞) h


≈setoid : (i : Size) (A : Set)  Setoid _ _
≈setoid i A = record
  { Carrier       = Delay  A
  ; _≈_           = _≈_ {i}
  ; isEquivalence = record
    { refl  = ≈refl
    ; sym   = ≈sym
    ; trans = ≈trans
    }
  }

∞≈setoid : (i : Size) (A : Set)  Setoid _ _
∞≈setoid i A = record
  { Carrier       = ∞Delay  A
  ; _≈_           = _∞≈_ {i}
  ; isEquivalence = record
    { refl  = ∞≈refl
    ; sym   = ∞≈sym
    ; trans = ∞≈trans
    }
  }

module ≈-Reasoning {i A} where
  open PR (Setoid.preorder (≈setoid i A)) public
    using (_∎)
    renaming (_≈⟨⟩_ to _≡⟨⟩_ ; _≈⟨_⟩_ to _≡⟨_⟩_ ; _∼⟨_⟩_ to _≈⟨_⟩_ ; begin_ to proof_)

module ∞≈-Reasoning {i A} where
  open PR (Setoid.preorder (∞≈setoid i A)) public
    using (_∎)
    renaming (_≈⟨⟩_ to _≡⟨⟩_ ; _≈⟨_⟩_ to _≡⟨_⟩_ ; _∼⟨_⟩_ to _∞≈⟨_⟩_ ; begin_ to proof_)




sym-bind-assoc :  {i A B C} (a? : Delay  A) 
                 {f : A  Delay  B} {g : B  Delay  C} 
                 (a? >>= λ a  f a >>= g) ≈⟨ i ⟩≈ ((a? >>= f) >>= g)
sym-bind-assoc a? = ≈sym (bind-assoc a?)

syntax bind-assoc     a?             =  a?
syntax sym-bind-assoc a?             =  a?
syntax bind-cong-r    a?  a  b?) = a  a?  b?
syntax bind-cong-l    a≈a′           =  a≈a′

infix 35 bind-assoc  sym-bind-assoc
infix 30 bind-cong-r bind-cong-l