---------------------------------------------------------------------------------------------------------------
--
-- Equivalence of SS-H and BS-H
--
--                    5.7.1
--      SS-CBN|SS-H₂ ← SS-H ⎫       SS-H        ⎫     SS-H
--  5.1.1 ↓      ↓ 5.7.2     ⎬ 5.7.4 ↓   ↑ 5.7.5 ⎬ 5.7.6 ↕
--      BS-CBN|BS-H₂ → BS-H ⎭       BS-H        ⎭     BS-H
--                    5.7.3

module A201903.5-7-Equivalence-H where

open import A201903.1-2-Syntax-Predicates
import A201903.2-1-Semantics-BigStep as BS
import A201903.2-2-Semantics-SmallStep as SS
import A201903.3-1-Properties-BigStep-CBN as BS-CBN
import A201903.3-7-Properties-BigStep-H as BS-H
import A201903.3-7-1-Properties-BigStep-H₂ as BS-H₂
import A201903.4-1-Properties-SmallStep-CBN as SS-CBN
import A201903.4-7-Properties-SmallStep-H as SS-H
import A201903.4-7-1-Properties-SmallStep-H₂ as SS-H₂
open import A201903.5-1-Equivalence-CBN


---------------------------------------------------------------------------------------------------------------
--
-- Lemma 5.7.1.  SS-H to HNF implies SS-CBN to WHNF followed by SS-H₂ to HNF

module Lem-5-7-1 where
  open SS

  cbn←h :  {n} {e : Tm n} {e′}  ¬ WHNF e  e H.⇒ e′  e CBN.⇒ e′
  cbn←h ¬p H.applam       = CBN.applam
  cbn←h ¬p (H.lam r)      = lam  ¬p
  cbn←h ¬p (H.app₁ p₁ r₁) with whnf? _
  ... | no ¬p₁′            = CBN.app₁ (cbn←h ¬p₁′ r₁)
  ... | yes p₁′            = whnf (app (naxnf←whnf p₁′ p₁))  ¬p

  h₂←h :  {n} {e : Tm n} {e′}  WHNF e  e H.⇒ e′  e H₂.⇒ e′
  h₂←h lam             (H.lam r)       with whnf? _
  ... | no ¬p                           = H₂.cbn-lam ¬p (cbn←h ¬p r)
  ... | yes p                           = H₂.lam p (h₂←h p r)
  h₂←h (whnf var)      ()
  h₂←h (whnf (app ())) H.applam
  h₂←h (whnf (app p₁)) (H.app₁ p₁′ r₁) = H₂.app₁ p₁ (h₂←h (whnf p₁) r₁)

  cbn|h₂←h :  {n} {e : Tm n} {e′}  e H.⇒ e′  (e CBN.⇒ e′)  (e H₂.⇒ e′)
  cbn|h₂←h r with whnf? _
  ... | no ¬p = inj₁ (cbn←h ¬p r)
  ... | yes p = inj₂ (h₂←h p r)

  h₂←h* :  {n} {e : Tm n} {e′}  WHNF e  e H.⇒* e′  e H₂.⇒* e′
  h₂←h* p ε        = ε
  h₂←h* p (r  rs) = h₂←h p r  h₂←h* (SS-H₂.whnf-⇒ (h₂←h p r)) rs

  cbn|h₂←h* :  {n} {e : Tm n} {e′}  e H.⇒* e′  HNF e′ 
                 ( λ e″ 
                   e CBN.⇒* e″ × WHNF e″ × e″ H₂.⇒* e′)
  cbn|h₂←h* ε        p′   = _ , ε , whnf←hnf p′ , ε
  cbn|h₂←h* (r  rs) p′   with cbn|h₂←h r
  ... | inj₂ r′            = _ , ε , SS-H₂.rev-whnf-⇒ r′ , r′  h₂←h* (SS-H₂.whnf-⇒ r′) rs
  ... | inj₁ r′            with cbn|h₂←h* rs p′
  ... | _ , rs′ , p″ , rs″ = _ , r′  rs′ , p″ , rs″


---------------------------------------------------------------------------------------------------------------
--
-- Lemma 5.7.2.  SS-H₂ to HNF implies BS-H₂

module Lem-5-7-2 where
  open BS-H₂
  open SS-H₂

  rev-lam* :  {n i s} {e : Tm (suc n)} {e′}  WHNF e  lam s e ⇒*⟨ i  lam s e′  e ⇒*⟨ i  e′
  rev-lam* p ε                   = ε
  rev-lam* p (cbn-lam ¬p r  rs) = p  ¬p
  rev-lam* p (lam p′ r  rs)     = r  rev-lam* (whnf-⇒ r) rs

  rev-cbn-lam* :  {n i s} {e : Tm (suc n)} {e′} 
                 lam s e ⇒*⟨ i  lam s e′  HNF e′ 
                 ( λ e″ 
                   e SS.CBN.⇒*⟨ i  e″ × WHNF e″ × e″ ⇒* e′)
  rev-cbn-lam* ε                   p′ = _ , ε , whnf←hnf p′ , ε
  rev-cbn-lam* (cbn-lam ¬p r  rs) p′ with rev-cbn-lam* rs p′
  ... | _ , rs′ , p″ , rs″            = _ , r  rs′ , p″ , rs″
  rev-cbn-lam* (lam p r  rs)      p′ = _ , ε , p , r  rev-lam* (whnf-⇒ r) rs

  ¬lam⇒*var :  {n s} {e : Tm (suc n)} {s′ x}  ¬ (lam s e ⇒* var s′ x)
  ¬lam⇒*var = λ { (cbn-lam ¬p r  rs)  rs  ¬lam⇒*var
                 ; (lam p r  rs)       rs  ¬lam⇒*var }

  ¬lam-s⇒*lam-s′ :  {n s} {e : Tm (suc n)} {s′ e′}  s  s′  ¬ (lam s e ⇒* lam s′ e′)
  ¬lam-s⇒*lam-s′ s≢s′ = λ { ε                    refl  s≢s′
                           ; (cbn-lam ¬p r  rs)  rs  ¬lam-s⇒*lam-s′ s≢s′
                           ; (lam p r  rs)       rs  ¬lam-s⇒*lam-s′ s≢s′ }

  ¬lam⇒*app :  {n s} {e : Tm (suc n)} {e₁ e₂}  ¬ (lam s e ⇒* app e₁ e₂)
  ¬lam⇒*app = λ { (cbn-lam ¬p r  rs)  rs  ¬lam⇒*app
                 ; (lam p r  rs)       rs  ¬lam⇒*app }

  rev-app₁* :  {n i} {e₁ e₂ : Tm n} {e′} 
              app e₁ e₂ ⇒*⟨ i  e′  HNF e′ 
              ( λ e₁′ 
                e₁ ⇒*⟨ i  e₁′ × NAXNF e₁′ × app e₁′ e₂  e′)
  rev-app₁* ε                 (hnf (app p₁′)) = _ , ε , p₁′ , refl
  rev-app₁* (app₁ p₁ r₁  rs) p′              with rev-app₁* rs p′
  ... | _ , rs₁ , p₁′ , refl                  = _ , r₁  rs₁ , p₁′ , refl

  mutual
    bs←ss :  {n i} {e : Tm n} {e′}  e ⇒*⟨ i  e′  HNF e′  e  e′
    bs←ss ε        p′ = refl-⟱ p′
    bs←ss (r  rs) p′ = bs←ss′ r rs p′

    bs←ss′ :  {n i} {e : Tm n} {e′ e″}  e  e′  e′ ⇒*⟨ i  e″  HNF e″  e  e″
    bs←ss′ (cbn-lam {s = s} ¬p r) rs (lam {s = s′} p″) with s  s′
    ... | no s≢s′                                       = rs  ¬lam-s⇒*lam-s′ s≢s′
    ... | yes refl                                      with rev-cbn-lam* rs p″
    ... | _ , rs′ , p′ , rs″                            = lam (Lem-5-1-1.bs←ss′ r rs′ p′)
                                                              (bs←ss rs″ p″)
    bs←ss′ (cbn-lam ¬p r)         rs (hnf var)         = rs  ¬lam⇒*var
    bs←ss′ (cbn-lam ¬p r)         rs (hnf (app _))     = rs  ¬lam⇒*app
    bs←ss′ (lam {s = s} p r)      rs (lam {s = s′} p″) with s  s′
    ... | no s≢s′                                       = rs  ¬lam-s⇒*lam-s′ s≢s′
    ... | yes refl                                      = lam (BS-CBN.refl-⟱ p)
                                                              (bs←ss′ r (rev-lam* (whnf-⇒ r) rs) p″)
    bs←ss′ (lam p r)              rs (hnf var)         = rs  ¬lam⇒*var
    bs←ss′ (lam p r)              rs (hnf (app _))     = rs  ¬lam⇒*app
    bs←ss′ (app₁ p₁ r₁)           rs p″                with rev-app₁* rs p″
    ... | _ , rs₁ , p₁′ , refl                          = app p₁ (bs←ss′ r₁ rs₁ (hnf p₁′))


---------------------------------------------------------------------------------------------------------------
--
-- Lemma 5.7.3.  BS-CBN followed by BS-H₂ implies BS-H

module Lem-5-7-3 where
  open BS

  h←cbn|h₂ :  {n} {e : Tm n} {e′ e″}  e CBN.⟱ e′  e′ H₂.⟱ e″  e H.⟱ e″
  h←cbn|h₂ (CBN.applam r₁ r) r′              = H.applam r₁ (h←cbn|h₂ r r′)
  h←cbn|h₂ CBN.var           H₂.var          = H.var
  h←cbn|h₂ CBN.lam           (H₂.lam r r′)   = H.lam (h←cbn|h₂ r r′)
  h←cbn|h₂ (CBN.app r₁ p₁′)  (H₂.app p₁ r₁′) = H.app r₁ p₁′ r₁″
    where
      r₁″ = h←cbn|h₂ (BS-CBN.refl-⟱ (BS-CBN.whnf-⟱ r₁)) r₁′


---------------------------------------------------------------------------------------------------------------
--
-- Corollary 5.7.4.  SS-H to HNF implies BS-H

module Cor-5-7-4 where
  open SS-H
  open BS-H

  bs←ss :  {n} {e : Tm n} {e′}  e ⇒* e′  HNF e′  e  e′
  bs←ss rs p′             with Lem-5-7-1.cbn|h₂←h* rs p′
  ... | _ , rs′ , p″ , rs″ = Lem-5-7-3.h←cbn|h₂ (Lem-5-1-1.bs←ss rs′ p″)
                                                 (Lem-5-7-2.bs←ss rs″ p′)


---------------------------------------------------------------------------------------------------------------
--
-- Lemma 5.7.5.  BS-H implies SS-H

module Lem-5-7-5 where
  open SS-H
  open BS-H

  applam* :  {n s} {e₁ : Tm (suc n)} {e₂ : Tm n}  app (lam s e₁) e₂ ⇒* e₁ [ e₂ ]
  applam* = applam  ε

  lam* :  {n s} {e : Tm (suc n)} {e′}  e ⇒* e′  lam s e ⇒* lam s e′
  lam* = map* lam

  cbn-app₁* :  {n} {e₁ e₂ : Tm n} {e₁′}  e₁ SS.CBN.⇒* e₁′  app e₁ e₂ ⇒* app e₁′ e₂
  cbn-app₁* = map* cbn-app₁

  app₁* :  {n} {e₁ e₂ : Tm n} {e₁′}  NAXNF e₁  e₁ ⇒* e₁′  app e₁ e₂ ⇒* app e₁′ e₂
  app₁* p₁ ε          = ε
  app₁* p₁ (r₁  rs₁) = app₁ (na←naxnf p₁) r₁  app₁* (naxnf-⇒ p₁ r₁) rs₁

  bs-applam :  {n s} {e₁ e₂ : Tm n} {e₁′ e′} 
              e₁ SS.CBN.⇒* lam s e₁′  e₁′ [ e₂ ] ⇒* e′ 
              app e₁ e₂ ⇒* e′
  bs-applam rs₁ rs = cbn-app₁* rs₁ ◅◅ applam* ◅◅ rs

  bs-lam :  {n s} {e : Tm (suc n)} {e′}  e ⇒* e′  lam s e ⇒* lam s e′
  bs-lam = lam*

  bs-app :  {n} {e₁ e₂ : Tm n} {e₁′ e₁″} 
           e₁ SS.CBN.⇒* e₁′  NAXNF e₁′  e₁′ ⇒* e₁″ 
           app e₁ e₂ ⇒* app e₁″ e₂
  bs-app rs₁ p₁′ rs₁′ = cbn-app₁* rs₁ ◅◅ app₁* p₁′ rs₁′

  ss←bs :  {n} {e : Tm n} {e′}  e  e′  e ⇒* e′
  ss←bs (applam r₁ r)    = bs-applam (Lem-5-1-2.ss←bs r₁) (ss←bs r)
  ss←bs var              = ε
  ss←bs (lam r)          = bs-lam (ss←bs r)
  ss←bs (app r₁ p₁′ r₁′) = bs-app (Lem-5-1-2.ss←bs r₁) p₁″ (ss←bs r₁′)
    where
      p₁″ = naxnf←whnf (BS-CBN.whnf-⟱ r₁) p₁′


---------------------------------------------------------------------------------------------------------------
--
-- Theorem 5.7.6.  SS-H to HNF and BS-H coincide

module Thm-5-7-6 where
  ss↔bs :  {n} {e : Tm n} {e′}  (e SS.H.⇒* e′ × HNF e′)  e BS.H.⟱ e′
  ss↔bs = uncurry Cor-5-7-4.bs←ss , λ r  Lem-5-7-5.ss←bs r , BS-H.hnf-⟱ r


---------------------------------------------------------------------------------------------------------------