module A201903.4-7-Properties-SmallStep-H where
open import A201903.2-2-Semantics-SmallStep
open H public
cbn-app₁ : ∀ {n} {e₁ e₂ : Tm n} {e₁′} → e₁ CBN.⇒ e₁′ → app e₁ e₂ ⇒ app e₁′ e₂
cbn-app₁ CBN.applam = app₁ app applam
cbn-app₁ (CBN.app₁ r₁) = app₁ app (cbn-app₁ r₁)
h←cbn : ∀ {n} {e : Tm n} {e′} → e CBN.⇒ e′ → e ⇒ e′
h←cbn CBN.applam = applam
h←cbn (CBN.app₁ r₁) = cbn-app₁ r₁
h←h₂ : ∀ {n} {e : Tm n} {e′} → e H₂.⇒ e′ → e ⇒ e′
h←h₂ (H₂.cbn-lam ¬p r) = lam (h←cbn r)
h←h₂ (H₂.lam p r) = lam (h←h₂ r)
h←h₂ (H₂.app₁ p₁ r₁) = app₁ (na←naxnf p₁) (h←h₂ r₁)
data RF? {n} : Pred₀ (Tm n) where
yes : ∀ {e} → RF e → RF? e
no : ∀ {e} → HNF e → RF? e
rf? : ∀ {n} (e : Tm n) → RF? e
rf? (var s x) = no (hnf var)
rf? (lam s e) with rf? e
... | yes (_ , r) = yes (_ , lam r)
... | no p = no (lam p)
rf? (app e₁ e₂) with rf? e₁
... | yes (_ , applam) = yes (_ , app₁ app applam)
... | yes (_ , lam r₁) = yes (_ , applam)
... | yes (_ , app₁ p₁ r₁) = yes (_ , app₁ app (app₁ p₁ r₁))
... | no (lam p₁) = yes (_ , applam)
... | no (hnf p₁) = no (hnf (app p₁))
eval : ∀ {n i} (e : Tm n) → e ᶜᵒ⇓[ HNF ]⟨ i ⟩
eval e with rf? e
... | yes (_ , r) = r ◅ λ where .force → eval _
... | no p = ε p
hnf←nrf : ∀ {n} {e : Tm n} → NRF e → HNF e
hnf←nrf p with rf? _
... | yes (_ , r) = r ↯ p
... | no p′ = p′
nrf←naxnf : ∀ {n} {e : Tm n} → NAXNF e → NRF e
nrf←naxnf var = λ ()
nrf←naxnf (app p₁) = λ { (applam) → case p₁ of λ ()
; (app₁ p₁′ r₁) → r₁ ↯ nrf←naxnf p₁ }
nrf←hnf : ∀ {n} {e : Tm n} → HNF e → NRF e
nrf←hnf (lam p) = λ { (lam r) → r ↯ nrf←hnf p }
nrf←hnf (hnf p) = nrf←naxnf p
rev-applam : ∀ {n s} {e₁ : Tm (suc n)} {e₂ : Tm n} {e′} →
(r : app (lam s e₁) e₂ ⇒ e′) →
(Σ (e′ ≡ e₁ [ e₂ ]) λ { refl →
r ≡ applam })
rev-applam applam = refl , refl
rev-applam (app₁ () r₁)
uniq-⇒ : Unique _⇒_
uniq-⇒ {e = var _ _} () ()
uniq-⇒ {e = lam _ _} (lam r) (lam r′) = lam & uniq-⇒ r r′
uniq-⇒ {e = app (var _ _) _} (app₁ p₁ ()) r′
uniq-⇒ {e = app (lam _ _) _} applam r′ with rev-applam r′
... | refl , refl = refl
uniq-⇒ {e = app (lam _ _) _} (app₁ () r₁) r′
uniq-⇒ {e = app (app _ _) _} (app₁ p₁ r₁) (app₁ p₁′ r₁′) = app₁ & uniq-na p₁ p₁′ ⊗ uniq-⇒ r₁ r₁′
det-⇒ : Deterministic _⇒_
det-⇒ applam applam = refl
det-⇒ applam (app₁ () r₁′)
det-⇒ (lam r) (lam r′) = lam & refl ⊗ det-⇒ r r′
det-⇒ (app₁ () r₁) applam
det-⇒ (app₁ p₁ r₁) (app₁ p₁′ r₁′) = app & det-⇒ r₁ r₁′ ⊗ refl
conf-⇒ : Confluent _⇒_
conf-⇒ = cor-conf-⇒ det-⇒
det-⇓-nrf : Deterministic _⇓[ NRF ]_
det-⇓-nrf = cor-det-⇓-nrf det-⇒
naxnf-⇒ : ∀ {n} {e : Tm n} {e′} → NAXNF e → e ⇒ e′ → NAXNF e′
naxnf-⇒ var ()
naxnf-⇒ (app ()) applam
naxnf-⇒ (app p₁) (app₁ p₁′ r₁) = r₁ ↯ nrf←naxnf p₁
hnf-⇒ : ∀ {n} {e : Tm n} {e′} → HNF e → e ⇒ e′ → HNF e′
hnf-⇒ (lam p) (lam r) = r ↯ nrf←hnf p
hnf-⇒ (hnf p) r = hnf (naxnf-⇒ p r)