module A201903.4-7-1-Properties-SmallStep-H₂ where
open import A201903.2-2-Semantics-SmallStep
open H₂ public
import A201903.4-1-Properties-SmallStep-CBN as CBN
data RF? {n} : Pred₀ (Tm n) where
cbn-yes : ∀ {e} → CBN.RF e → RF? e
yes : ∀ {e} → WHNF e → RF e → RF? e
no : ∀ {e} → HNF e → RF? e
rf? : ∀ {n} (e : Tm n) → RF? e
rf? e with CBN.rf? e
... | CBN.yes (_ , r) = cbn-yes (_ , r)
rf? (var s x) | CBN.no _ = no (hnf var)
rf? (lam s e) | CBN.no _ with rf? e
... | cbn-yes (_ , r) = yes lam (_ , cbn-lam (λ p′ → r ↯ CBN.nrf←whnf p′) r)
... | yes p (_ , r) = yes lam (_ , lam p r)
... | no p = no (lam p)
rf? (app e₁ e₂) | CBN.no (whnf (app p₁)) with rf? e₁
... | cbn-yes (_ , r₁) = cbn-yes (_ , CBN.app₁ r₁)
... | yes p₁′ (_ , r₁) = no (hnf (app p₁))
... | no p₁′ = no (hnf (app p₁))
cbn-rf|hnf←nrf : ∀ {n} {e : Tm n} → NRF e → CBN.RF e ⊎ HNF e
cbn-rf|hnf←nrf p with rf? _
... | cbn-yes (_ , r) = inj₁ (_ , r)
... | yes p′ (_ , r) = r ↯ p
... | no p′ = inj₂ p′
nrf←cbn-rf : ∀ {n} {e : Tm n} → CBN.RF e → NRF e
nrf←cbn-rf (_ , r) = λ { (cbn-lam ¬p r′) → case r of λ ()
; (lam p r′) → case r of λ ()
; (app₁ p₁ r₁) → case r of
λ { CBN.applam → case p₁ of λ ()
; (CBN.app₁ r₁′) → r₁′ ↯ CBN.nrf←naxnf p₁ } }
mutual
nrf←hnf : ∀ {n} {e : Tm n} → HNF e → NRF e
nrf←hnf (lam p) = λ { (cbn-lam ¬p r) → whnf←hnf p ↯ ¬p
; (lam p′ r) → r ↯ nrf←hnf p }
nrf←hnf (hnf p) = nrf←naxnf p
nrf←naxnf : ∀ {n} {e : Tm n} → NAXNF e → NRF e
nrf←naxnf var = λ ()
nrf←naxnf (app p₁) = λ { (app₁ p₁′ r₁) → r₁ ↯ nrf←naxnf p₁ }
uniq-⇒ : Unique _⇒_
uniq-⇒ {e = var _ _} () ()
uniq-⇒ {e = lam _ _} (cbn-lam ¬p r) (cbn-lam ¬p′ r′) = cbn-lam & uniq-¬whnf ¬p ¬p′ ⊗ CBN.uniq-⇒ r r′
uniq-⇒ {e = lam _ _} (cbn-lam ¬p r) (lam p′ r′) = p′ ↯ ¬p
uniq-⇒ {e = lam _ _} (lam p r) (cbn-lam ¬p′ r′) = p ↯ ¬p′
uniq-⇒ {e = lam _ _} (lam p r) (lam p′ r′) = lam & uniq-whnf p p′ ⊗ uniq-⇒ r r′
uniq-⇒ {e = app _ _} (app₁ p₁ r₁) (app₁ p₁′ r₁′) = app₁ & uniq-naxnf p₁ p₁′ ⊗ uniq-⇒ r₁ r₁′
det-⇒ : Deterministic _⇒_
det-⇒ (cbn-lam ¬p r) (cbn-lam ¬p′ r′) = lam & refl ⊗ CBN.det-⇒ r r′
det-⇒ (cbn-lam ¬p r) (lam p′ r′) = p′ ↯ ¬p
det-⇒ (lam p r) (cbn-lam ¬p′ r′) = p ↯ ¬p′
det-⇒ (lam p r) (lam p′ r′) = lam & refl ⊗ det-⇒ r r′
det-⇒ (app₁ p₁ r₁) (app₁ p₁′ r₁′) = app & det-⇒ r₁ r₁′ ⊗ refl
conf-⇒ : Confluent _⇒_
conf-⇒ = cor-conf-⇒ det-⇒
det-⇓-nrf : Deterministic _⇓[ NRF ]_
det-⇓-nrf = cor-det-⇓-nrf det-⇒
naxnf-⇒ : ∀ {n} {e : Tm n} {e′} → NAXNF e → e ⇒ e′ → NAXNF e′
naxnf-⇒ var ()
naxnf-⇒ (app _) (app₁ p₁ r₁) = app (naxnf-⇒ p₁ r₁)
whnf-⇒ : ∀ {n} {e : Tm n} {e′} → e ⇒ e′ → WHNF e′
whnf-⇒ (cbn-lam ¬p r) = lam
whnf-⇒ (lam p r) = lam
whnf-⇒ (app₁ p₁ r₁) = whnf (app (naxnf-⇒ p₁ r₁))
rev-whnf-⇒ : ∀ {n} {e : Tm n} {e′} → e ⇒ e′ → WHNF e
rev-whnf-⇒ (cbn-lam ¬p r) = lam
rev-whnf-⇒ (lam p r) = lam
rev-whnf-⇒ (app₁ p₁ r₁) = whnf (app p₁)