module A201802.WIP.LR3NonMutual where open import A201801.Prelude open import A201801.Category open import A201801.Fin open import A201801.FinLemmas open import A201801.Vec open import A201801.VecLemmas open import A201801.AllVec open import A201802.LR0 open import A201802.LR0Lemmas open import A201802.LR1 open import A201802.LR2 -- TODO: which LR2? -------------------------------------------------------------------------------- -- -- `SN _ A` is the strong normalisation predicate on terms at type `A`. -- SN : Term 0 → Type → Set -- SN M 𝟙 = ∙ ⊢ M ⦂ 𝟙 × M ⇓ -- SN M 𝔹 = ∙ ⊢ M ⦂ 𝔹 × M ⇓ -- SN M (A ⊃ B) = ∙ ⊢ M ⦂ A ⊃ B × M ⇓ × (∀ {N} → SN N A → SN (APP M N) B) -- -- Every SN term is well-typed. -- derp : ∀ {A M} → SN M A -- → ∙ ⊢ M ⦂ A -- derp {𝟙} (𝒟 , M⇓) = 𝒟 -- derp {𝔹} (𝒟 , M⇓) = 𝒟 -- derp {A ⊃ B} (𝒟 , M⇓ , f) = 𝒟 -- -------------------------------------------------------------------------------- -- -- Small-step reduction IN REVERSE preserves SN. -- snpr⤇ : ∀ {A M M′} → M ⤇ M′ → ∙ ⊢ M ⦂ A → SN M′ A -- → SN M A -- snpr⤇ {𝟙} r 𝒟 (𝒟′ , M⇓) = 𝒟 , hpr⤇ r M⇓ -- snpr⤇ {𝔹} r 𝒟 (𝒟′ , M⇓) = 𝒟 , hpr⤇ r M⇓ -- snpr⤇ {A ⊃ B} r 𝒟 (𝒟′ , M⇓ , f) = 𝒟 , hpr⤇ r M⇓ , (\ s → -- snpr⤇ (cong-APP r) (app 𝒟 (derp s)) (f s)) -- -- Iterated small-step reduction IN REVERSE preserves SN. -- snpr⤇* : ∀ {A M M′} → M ⤇* M′ → ∙ ⊢ M ⦂ A → SN M′ A -- → SN M A -- snpr⤇* done 𝒟 s = s -- snpr⤇* (step M⤇M″ M″⤇*M′) 𝒟 s = snpr⤇ M⤇M″ 𝒟 (snpr⤇* M″⤇*M′ (tp⤇ M⤇M″ 𝒟) s) -- -- Big-step reduction IN REVERSE preserves SN. -- snpr⇓ : ∀ {A M M′} → M ⇓ M′ → ∙ ⊢ M ⦂ A → SN M′ A -- → SN M A -- snpr⇓ (M⤇*M′ , VM′) 𝒟 s = snpr⤇* M⤇*M′ 𝒟 s -- -- IF `M` reduces to `TRUE` and `N` is SN, then `IF M N O` is SN. -- sn-IF-TRUE : ∀ {C M N O} → M ⤇* TRUE → ∙ ⊢ M ⦂ 𝔹 → SN N C → ∙ ⊢ O ⦂ C -- → SN (IF M N O) C -- sn-IF-TRUE {𝟙} M⤇*TRUE 𝒟 (ℰ , N⇓) ℱ = if 𝒟 ℰ ℱ , halt-IF-TRUE M⤇*TRUE N⇓ -- sn-IF-TRUE {𝔹} M⤇*TRUE 𝒟 (ℰ , N⇓) ℱ = if 𝒟 ℰ ℱ , halt-IF-TRUE M⤇*TRUE N⇓ -- sn-IF-TRUE {A ⊃ B} M⤇*TRUE 𝒟 (ℰ , N⇓ , f) ℱ = if 𝒟 ℰ ℱ , halt-IF-TRUE M⤇*TRUE N⇓ , (\ s → -- snpr⤇* (congs-APP (congs-IF-TRUE M⤇*TRUE done)) (app (if 𝒟 ℰ ℱ) (derp s)) (f s)) -- -- IF `M` reduces to `FALSE` and `O` is SN, then `IF M N O` is SN. -- sn-IF-FALSE : ∀ {C M N O} → M ⤇* FALSE → ∙ ⊢ M ⦂ 𝔹 → ∙ ⊢ N ⦂ C → SN O C -- → SN (IF M N O) C -- sn-IF-FALSE {𝟙} M⤇*FALSE 𝒟 ℰ (ℱ , O⇓) = if 𝒟 ℰ ℱ , halt-IF-FALSE M⤇*FALSE O⇓ -- sn-IF-FALSE {𝔹} M⤇*FALSE 𝒟 ℰ (ℱ , O⇓) = if 𝒟 ℰ ℱ , halt-IF-FALSE M⤇*FALSE O⇓ -- sn-IF-FALSE {A ⊃ B} M⤇*FALSE 𝒟 ℰ (ℱ , O⇓ , f) = if 𝒟 ℰ ℱ , halt-IF-FALSE M⤇*FALSE O⇓ , (\ s → -- snpr⤇* (congs-APP (congs-IF-FALSE M⤇*FALSE done)) (app (if 𝒟 ℰ ℱ) (derp s)) (f s)) -- -------------------------------------------------------------------------------- -- -- Small-step reduction preserves SN. -- snp⤇ : ∀ {A M M′} → M ⤇ M′ → ∙ ⊢ M ⦂ A → SN M A -- → SN M′ A -- snp⤇ {𝟙} M⤇M′ 𝒟 (_ , M⇓) = tp⤇ M⤇M′ 𝒟 , hp⤇ M⤇M′ M⇓ -- snp⤇ {𝔹} M⤇M′ 𝒟 (_ , M⇓) = tp⤇ M⤇M′ 𝒟 , hp⤇ M⤇M′ M⇓ -- snp⤇ {A ⊃ B} M⤇M′ 𝒟 (_ , M⇓ , f) = tp⤇ M⤇M′ 𝒟 , hp⤇ M⤇M′ M⇓ , (\ s → -- snp⤇ (cong-APP M⤇M′) (app 𝒟 (derp s)) (f s)) -- -- Iterated small-step reduction preserves SN. -- snp⤇* : ∀ {A M M′} → M ⤇* M′ → ∙ ⊢ M ⦂ A → SN M A -- → SN M′ A -- snp⤇* done 𝒟 s = s -- snp⤇* (step M⤇M″ M″⤇*M′) 𝒟 s = snp⤇* M″⤇*M′ (tp⤇ M⤇M″ 𝒟) (snp⤇ M⤇M″ 𝒟 s) -- -- Big-step reduction preserves SN. -- snp⇓ : ∀ {A M M′} → M ⇓ M′ → ∙ ⊢ M ⦂ A → SN M A -- → SN M′ A -- snp⇓ (M⤇*M′ , VM′) 𝒟 s = snp⤇* M⤇*M′ 𝒟 s -- -------------------------------------------------------------------------------- -- -- `SNs Γ` is the strong normalisation predicate on substitutions at all types `Γ`. -- SNs : ∀ {g} → (τ : Terms 0 g) → Types g → Set -- SNs τ Γ = All (\ { (M , A) → SN M A }) (zip τ Γ) -- -- Every SN substitution is well-typed. -- derps : ∀ {g} → {τ : Terms 0 g} {Γ : Types g} -- → SNs τ Γ -- → ∙ ⊢ τ ⦂ Γ all -- derps σ = maps derp σ -- -------------------------------------------------------------------------------- -- -- TODO -- red-APP-LAM-SUB : ∀ {g M N} → {τ : Terms 0 g} → {{_ : Val N}} -- → APP (LAM (SUB (LIFTS τ) M)) N ⤇ SUB (τ , N) M -- red-APP-LAM-SUB {M = M} {N} {τ} rewrite simp-CUT-SUB N τ M ⁻¹ = do red-APP-LAM -- -- TODO -- big-red-APP-LAM-SUB : ∀ {g M M′ N} → {τ : Terms 0 g} → {{_ : Vals τ}} {{_ : Val N}} -- → SUB (τ , N) M ⇓ M′ -- → APP (LAM (SUB (LIFTS τ) M)) N ⇓ M′ -- big-red-APP-LAM-SUB {M = M} (SUB-M⤇*M′ , VM′) = step (red-APP-LAM-SUB {M = M}) SUB-M⤇*M′ , VM′ -- -- TODO -- halt-APP-LAM-SUB : ∀ {g M N} → {τ : Terms 0 g} → {{_ : Vals τ}} {{_ : Val N}} -- → SUB (τ , N) M ⇓ -- → APP (LAM (SUB (LIFTS τ) M)) N ⇓ -- halt-APP-LAM-SUB {M = M} (M′ , SUB-M⇓M′) = M′ , big-red-APP-LAM-SUB {M = M} SUB-M⇓M′ -- -- TODO -- sn-APP-LAM-SUB : ∀ {B g M N A} → {τ : Terms 0 g} → {{_ : Vals τ}} {{_ : Val N}} -- → ∙ ⊢ SUB τ (LAM M) ⦂ A ⊃ B → ∙ ⊢ N ⦂ A → SN (SUB (τ , N) M) B -- → SN (APP (LAM (SUB (LIFTS τ) M)) N) B -- sn-APP-LAM-SUB {𝟙} {M = M} 𝒟 ℰ (𝒟′ , SUB-M⇓) = app 𝒟 ℰ , halt-APP-LAM-SUB {M = M} SUB-M⇓ -- sn-APP-LAM-SUB {𝔹} {M = M} 𝒟 ℰ (𝒟′ , SUB-M⇓) = app 𝒟 ℰ , halt-APP-LAM-SUB {M = M} SUB-M⇓ -- sn-APP-LAM-SUB {B₁ ⊃ B₂} {M = M} 𝒟 ℰ (𝒟′ , SUB-M⇓ , f) = app 𝒟 ℰ , halt-APP-LAM-SUB {M = M} SUB-M⇓ , (\ s → -- snpr⤇ (cong-APP (red-APP-LAM-SUB {M = M})) (app (app 𝒟 ℰ) (derp s)) (f s)) -- -------------------------------------------------------------------------------- -- -- TODO -- frob : ∀ {A M} → SN M A -- → Σ (Term 0) (\ M′ → ∙ ⊢ M ⦂ A × M ⇓ M′ × SN M′ A) -- frob {𝟙} s@(𝒟 , (M′ , M⇓M′)) = M′ , (𝒟 , M⇓M′ , snp⇓ M⇓M′ 𝒟 s) -- frob {𝔹} s@(𝒟 , (M′ , M⇓M′)) = M′ , (𝒟 , M⇓M′ , snp⇓ M⇓M′ 𝒟 s) -- frob {A ⊃ B} s@(𝒟 , (M′ , M⇓M′) , f) = M′ , (𝒟 , M⇓M′ , snp⇓ M⇓M′ 𝒟 s) -- -- TODO -- sn-SUB : ∀ {g M A} → {τ : Terms 0 g} {Γ : Types g} → {{_ : Vals τ}} -- → SNs τ Γ → Γ ⊢ M ⦂ A -- → SN (SUB τ M) A -- sn-SUB σ (var i) = get σ (zip∋₂ i) -- sn-SUB {{Vτ}} σ (lam {A} {M = M} 𝒟) = let 𝒟′ = sub (derps σ) (lam 𝒟) in -- 𝒟′ , (LAM _ , done , VLAM) , (\ s → -- case frob {A} s of (\ { (N′ , ℰ , (N⤇*N′ , VN′) , s′) → -- snpr⤇* (congs-APP-LAM N⤇*N′) -- (app 𝒟′ ℰ) -- (sn-APP-LAM-SUB {M = M} {{Vτ}} {{VN′}} 𝒟′ -- (derp s′) -- (sn-SUB {{Vτ , VN′}} (σ , s′) 𝒟)) })) -- sn-SUB σ (app 𝒟 ℰ) with sn-SUB σ 𝒟 -- sn-SUB σ (app 𝒟 ℰ) | 𝒟′ , M′⇓ , f = f (sn-SUB σ ℰ) -- sn-SUB σ unit = unit , UNIT , done , VUNIT -- sn-SUB σ true = true , TRUE , done , VTRUE -- sn-SUB σ false = false , FALSE , done , VFALSE -- sn-SUB σ (if 𝒟 ℰ ℱ) with sn-SUB σ 𝒟 -- sn-SUB σ (if 𝒟 ℰ ℱ) | 𝒟′ , M′ , SUB-M⤇*M′ , VM′ with tp⤇* SUB-M⤇*M′ 𝒟′ -- sn-SUB σ (if 𝒟 ℰ ℱ) | 𝒟′ , LAM _ , _ , VLAM | () -- sn-SUB σ (if 𝒟 ℰ ℱ) | 𝒟′ , UNIT , _ , VUNIT | () -- sn-SUB σ (if 𝒟 ℰ ℱ) | 𝒟′ , TRUE , SUB-M⤇*TRUE , VTRUE | true = sn-IF-TRUE SUB-M⤇*TRUE 𝒟′ (sn-SUB σ ℰ) (sub (derps σ) ℱ) -- sn-SUB σ (if 𝒟 ℰ ℱ) | 𝒟′ , FALSE , SUB-M⤇*FALSE , VFALSE | false = sn-IF-FALSE SUB-M⤇*FALSE 𝒟′ (sub (derps σ) ℰ) (sn-SUB σ ℱ) -- -------------------------------------------------------------------------------- -- -- Every well-typed term is SN. -- sn : ∀ {A M} → ∙ ⊢ M ⦂ A -- → SN M A -- sn {A} {M} 𝒟 = subst (\ M′ → SN M′ A) (id-SUB M) (sn-SUB ∙ 𝒟) -- -- Every SN term terminates. -- herp : ∀ {A M} → SN M A -- → M ⇓ -- herp {𝟙} (𝒟 , M⇓) = M⇓ -- herp {𝔹} (𝒟 , M⇓) = M⇓ -- herp {A ⊃ B} (𝒟 , M⇓ , f) = M⇓ -- -- Every well-typed term terminates. -- halt : ∀ {A M} → ∙ ⊢ M ⦂ A -- → M ⇓ -- halt {A} 𝒟 = herp {A} (sn 𝒟) -- --------------------------------------------------------------------------------