{-# OPTIONS --rewriting #-}
module A201801.AllVec where
open import A201801.Prelude
open import A201801.Vec
--------------------------------------------------------------------------------
data All {X} (P : X → Set) : ∀ {n} → Vec X n → Set
where
∙ : All P ∙
_,_ : ∀ {n Ξ A} → All P {n} Ξ → P A → All P (Ξ , A)
maps : ∀ {X P Q n} → {Ξ : Vec X n}
→ (∀ {A} → P A → Q A) → All P Ξ
→ All Q Ξ
maps f ∙ = ∙
maps f (ξ , a) = maps f ξ , f a
--------------------------------------------------------------------------------
get : ∀ {X P A n I} → {Ξ : Vec X n}
→ All P Ξ → Ξ ∋⟨ I ⟩ A
→ P A
get (ξ , a) zero = a
get (ξ , b) (suc i) = get ξ i
gets : ∀ {X P n n′ e} → {Ξ : Vec X n} {Ξ′ : Vec X n′}
→ All P Ξ′ → Ξ′ ⊇⟨ e ⟩ Ξ
→ All P Ξ
gets ξ done = ∙
gets (ξ , b) (drop η) = gets ξ η
gets (ξ , a) (keep η) = gets ξ η , a
--------------------------------------------------------------------------------
infix 4 _⊇◇⟨_⟩_
data _⊇◇⟨_⟩_ {X P} : ∀ {n n′ e} → {Ξ : Vec X n} {Ξ′ : Vec X n′}
→ All P Ξ′ → Ξ′ ⊇⟨ e ⟩ Ξ → All P Ξ → Set
where
done : ∙ ⊇◇⟨ done ⟩ ∙
drop : ∀ {A n n′ e} → {Ξ : Vec X n} {Ξ′ : Vec X n′} {η : Ξ′ ⊇⟨ e ⟩ Ξ}
{a : P A} {ξ : All P Ξ} {ξ′ : All P Ξ′}
→ ξ′ ⊇◇⟨ η ⟩ ξ
→ ξ′ , a ⊇◇⟨ drop η ⟩ ξ
keep : ∀ {A n n′ e} → {Ξ : Vec X n} {Ξ′ : Vec X n′} {η : Ξ′ ⊇⟨ e ⟩ Ξ}
{a : P A} {ξ : All P Ξ} {ξ′ : All P Ξ′}
→ ξ′ ⊇◇⟨ η ⟩ ξ
→ ξ′ , a ⊇◇⟨ keep η ⟩ ξ , a
bot⊇◇ : ∀ {X P n} → {Ξ : Vec X n} {ξ : All P Ξ}
→ ξ ⊇◇⟨ bot⊇ ⟩ ∙
bot⊇◇ {ξ = ∙} = done
bot⊇◇ {ξ = ξ , a} = drop bot⊇◇
id⊇◇ : ∀ {X P n} → {Ξ : Vec X n} {ξ : All P Ξ}
→ ξ ⊇◇⟨ id⊇ ⟩ ξ
id⊇◇ {ξ = ∙} = done
id⊇◇ {ξ = ξ , a} = keep id⊇◇
_∘⊇◇_ : ∀ {X P n n′ n″ e₁ e₂} → {Ξ : Vec X n} {Ξ′ : Vec X n′} {Ξ″ : Vec X n″}
{η₁ : Ξ′ ⊇⟨ e₁ ⟩ Ξ} {η₂ : Ξ″ ⊇⟨ e₂ ⟩ Ξ′}
{ξ : All P Ξ} {ξ′ : All P Ξ′} {ξ″ : All P Ξ″}
→ ξ′ ⊇◇⟨ η₁ ⟩ ξ → ξ″ ⊇◇⟨ η₂ ⟩ ξ′
→ ξ″ ⊇◇⟨ η₁ ∘⊇ η₂ ⟩ ξ
𝜂₁ ∘⊇◇ done = 𝜂₁
𝜂₁ ∘⊇◇ drop 𝜂₂ = drop (𝜂₁ ∘⊇◇ 𝜂₂)
drop 𝜂₁ ∘⊇◇ keep 𝜂₂ = drop (𝜂₁ ∘⊇◇ 𝜂₂)
keep 𝜂₁ ∘⊇◇ keep 𝜂₂ = keep (𝜂₁ ∘⊇◇ 𝜂₂)
--------------------------------------------------------------------------------
infix 4 _∋◇⟨_⟩_
data _∋◇⟨_⟩_ {X P} : ∀ {A n I} → {Ξ : Vec X n}
→ All P Ξ → Ξ ∋⟨ I ⟩ A → P A → Set
where
zero : ∀ {n A} → {Ξ : Vec X n} {ξ : All P Ξ} {a : P A}
→ ξ , a ∋◇⟨ zero ⟩ a
suc : ∀ {B n I A} → {Ξ : Vec X n} {i : Ξ ∋⟨ I ⟩ A}
{a : P A} {b : P B} {ξ : All P Ξ}
→ ξ ∋◇⟨ i ⟩ a
→ ξ , b ∋◇⟨ suc i ⟩ a
ren∋◇ : ∀ {X P A n n′ e I} → {Ξ : Vec X n} {Ξ′ : Vec X n′}
{η : Ξ′ ⊇⟨ e ⟩ Ξ} {i : Ξ ∋⟨ I ⟩ A}
{a : P A} {ξ : All P Ξ} {ξ′ : All P Ξ′}
→ ξ′ ⊇◇⟨ η ⟩ ξ → ξ ∋◇⟨ i ⟩ a
→ ξ′ ∋◇⟨ ren∋ η i ⟩ a
ren∋◇ done 𝑖 = 𝑖
ren∋◇ (drop 𝜂) 𝑖 = suc (ren∋◇ 𝜂 𝑖)
ren∋◇ (keep 𝜂) zero = zero
ren∋◇ (keep 𝜂) (suc 𝑖) = suc (ren∋◇ 𝜂 𝑖)
--------------------------------------------------------------------------------
-- zips : ∀ {X Y P Q n} → {Ξ : Vec X n} {Ψ : Vec Y n}
-- → All P Ξ → All Q Ψ
-- → All (\ { (A , B) → P A × Q B }) (zip Ξ Ψ)
-- zips ∙ ∙ = ∙
-- zips (ξ , a) (ψ , b) = zips ξ ψ , (a , b)
-- zips∋₁ : ∀ {X Y P Q n I A} → {Ξ : Vec X n} {Ψ : Vec Y n} {i : Ξ ∋⟨ I ⟩ A}
-- {ξ : All P Ξ} {ψ : All Q Ψ} {a : P A}
-- → ξ ∋◇⟨ i ⟩ a
-- → zips ξ ψ ∋◇⟨ zip∋₁ i ⟩ (a , get ψ (within Ψ i))
-- zips∋₁ {ξ = ξ , a} {ψ , b} zero = zero
-- zips∋₁ {ξ = ξ , b} {ψ , c} (suc 𝑖) = suc (zips∋₁ 𝑖)
-- zips∋₂ : ∀ {X Y P Q n I A} → {Ξ : Vec X n} {Ψ : Vec Y n} {i : Ψ ∋⟨ I ⟩ A}
-- {ξ : All P Ξ} {ψ : All Q Ψ} {a : Q A}
-- → ψ ∋◇⟨ i ⟩ a
-- → zips ξ ψ ∋◇⟨ zip∋₂ i ⟩ (get ξ (within Ξ i) , a)
-- zips∋₂ {ξ = ξ , b} {ψ , a} zero = zero
-- zips∋₂ {ξ = ξ , b} {ψ , c} (suc 𝑖) = suc (zips∋₂ 𝑖)
-- --------------------------------------------------------------------------------
-- data All◇ {X P} (𝑃 : ∀ {A : X} → P A → Set)
-- : ∀ {n} → {Ξ : Vec X n} → All P Ξ → Set
-- where
-- ∙ : All◇ 𝑃 ∙
-- _,_ : ∀ {A n} → {Ξ : Vec X n}
-- {ξ : All P Ξ} {a : P A}
-- → All◇ 𝑃 ξ → 𝑃 a
-- → All◇ 𝑃 (ξ , a)
-- get◇ : ∀ {X P n I A} → {Ξ : Vec X n} {a : P A}
-- {ξ : All P Ξ} {i : Ξ ∋⟨ I ⟩ A}
-- {𝑃 : ∀ {A} → P A → Set}
-- → All◇ 𝑃 ξ → ξ ∋◇⟨ i ⟩ a
-- → 𝑃 a
-- get◇ (𝜉 , 𝑎) zero = 𝑎
-- get◇ (𝜉 , 𝑏) (suc 𝑖) = get◇ 𝜉 𝑖
-- gets◇ : ∀ {X P n n′ e} → {Ξ : Vec X n} {Ξ′ : Vec X n′} {η : Ξ′ ⊇⟨ e ⟩ Ξ}
-- {ξ : All P Ξ} {ξ′ : All P Ξ′}
-- {𝑃 : ∀ {A} → P A → Set}
-- → All◇ 𝑃 ξ′ → ξ′ ⊇◇⟨ η ⟩ ξ
-- → All◇ 𝑃 ξ
-- gets◇ ∙ done = ∙
-- gets◇ (𝜉 , 𝑏) (drop 𝜂) = gets◇ 𝜉 𝜂
-- gets◇ (𝜉 , 𝑎) (keep 𝜂) = gets◇ 𝜉 𝜂 , 𝑎
-- maps◇ : ∀ {X P n} → {Ξ : Vec X n} {Q : X → Set}
-- {f : ∀ {A} → P A → Q A} {ξ : All P Ξ}
-- {𝑃 : ∀ {A} → P A → Set} {𝑄 : ∀ {A} → Q A → Set}
-- → (∀ {A} → {a : P A} → 𝑃 a → 𝑄 (f a)) → All◇ 𝑃 ξ
-- → All◇ 𝑄 (maps f ξ)
-- maps◇ 𝑓 ∙ = ∙
-- maps◇ 𝑓 (𝜉 , 𝑎) = maps◇ 𝑓 𝜉 , 𝑓 𝑎
-- --------------------------------------------------------------------------------