module A201607.BasicIS4.Metatheory.Gentzen-TarskiOvergluedImplicit where

open import A201607.BasicIS4.Syntax.Gentzen public
open import A201607.BasicIS4.Semantics.TarskiOvergluedImplicit public

open ImplicitSyntax (_⊢_) (mono⊢) public


-- Completeness with respect to a particular model.

module _ {{_ : Model}} where
  reify :  {A Γ}  Γ  A  Γ  A
  reify {α P}   s = syn s
  reify {A  B} s = syn (s refl⊆)
  reify { A}   s = syn (s refl⊆)
  reify {A  B} s = pair (reify (π₁ s)) (reify (π₂ s))
  reify {}    s = unit

  reify⋆ :  {Ξ Γ}  Γ ⊩⋆ Ξ  Γ ⊢⋆ Ξ
  reify⋆ {}             = 
  reify⋆ {Ξ , A} (ts , t) = reify⋆ ts , reify t


-- Soundness with respect to all models, or evaluation.

mutual
  eval :  {A Γ}  Γ  A  Γ  A
  eval (var i)         γ = lookup i γ
  eval (lam t)         γ = λ η  let γ′ = mono⊩⋆ η γ
                                  in  multicut (reify⋆ γ′) (lam t)  λ a 
                                        eval t (γ′ , a)
  eval (app t u)       γ = eval t γ ⟪$⟫ eval u γ
  eval (multibox ts u) γ = λ η  let γ′ = mono⊩⋆ η γ
                                  in  multicut (reify⋆ γ′) (multibox ts u) 
                                        eval u (eval⋆ ts γ′)
  eval (down t)        γ = ⟪↓⟫ (eval t γ)
  eval (pair t u)      γ = eval t γ , eval u γ
  eval (fst t)         γ = π₁ (eval t γ)
  eval (snd t)         γ = π₂ (eval t γ)
  eval unit            γ = 

  eval⋆ :  {Ξ Γ}  Γ ⊢⋆ Ξ  Γ ⊨⋆ Ξ
  eval⋆ {}             γ = 
  eval⋆ {Ξ , A} (ts , t) γ = eval⋆ ts γ , eval t γ


-- TODO: Correctness of evaluation with respect to conversion.


-- The canonical model.

private
  instance
    canon : Model
    canon = record
      { _⊩ᵅ_   = λ Γ P  Γ  α P
      ; mono⊩ᵅ = mono⊢
      }


-- Soundness with respect to the canonical model.

reflectᶜ :  {A Γ}  Γ  A  Γ  A
reflectᶜ {α P}   t = t  t
reflectᶜ {A  B} t = λ η  let t′ = mono⊢ η t
                            in  t′  λ a  reflectᶜ (app t′ (reify a))
reflectᶜ { A}   t = λ η  let t′ = mono⊢ η t
                            in  t′  reflectᶜ (down t′)
reflectᶜ {A  B} t = reflectᶜ (fst t) , reflectᶜ (snd t)
reflectᶜ {}    t = 

reflectᶜ⋆ :  {Ξ Γ}  Γ ⊢⋆ Ξ  Γ ⊩⋆ Ξ
reflectᶜ⋆ {}             = 
reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t


-- Reflexivity and transitivity.

refl⊩⋆ :  {Γ}  Γ ⊩⋆ Γ
refl⊩⋆ = reflectᶜ⋆ refl⊢⋆

trans⊩⋆ :  {Γ Γ′ Γ″}  Γ ⊩⋆ Γ′  Γ′ ⊩⋆ Γ″  Γ ⊩⋆ Γ″
trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reify⋆ ts) (reify⋆ us))


-- Completeness with respect to all models, or quotation.

quot :  {A Γ}  Γ  A  Γ  A
quot s = reify (s refl⊩⋆)


-- Normalisation by evaluation.

norm :  {A Γ}  Γ  A  Γ  A
norm = quot  eval


-- TODO: Correctness of normalisation with respect to conversion.