module A201607.BasicIS4.Metatheory.Gentzen-TarskiOvergluedImplicit where
open import A201607.BasicIS4.Syntax.Gentzen public
open import A201607.BasicIS4.Semantics.TarskiOvergluedImplicit public
open ImplicitSyntax (_⊢_) (mono⊢) public
module _ {{_ : Model}} where
reify : ∀ {A Γ} → Γ ⊩ A → Γ ⊢ A
reify {α P} s = syn s
reify {A ▻ B} s = syn (s refl⊆)
reify {□ A} s = syn (s refl⊆)
reify {A ∧ B} s = pair (reify (π₁ s)) (reify (π₂ s))
reify {⊤} s = unit
reify⋆ : ∀ {Ξ Γ} → Γ ⊩⋆ Ξ → Γ ⊢⋆ Ξ
reify⋆ {∅} ∙ = ∙
reify⋆ {Ξ , A} (ts , t) = reify⋆ ts , reify t
mutual
eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A
eval (var i) γ = lookup i γ
eval (lam t) γ = λ η → let γ′ = mono⊩⋆ η γ
in multicut (reify⋆ γ′) (lam t) ⅋ λ a →
eval t (γ′ , a)
eval (app t u) γ = eval t γ ⟪$⟫ eval u γ
eval (multibox ts u) γ = λ η → let γ′ = mono⊩⋆ η γ
in multicut (reify⋆ γ′) (multibox ts u) ⅋
eval u (eval⋆ ts γ′)
eval (down t) γ = ⟪↓⟫ (eval t γ)
eval (pair t u) γ = eval t γ , eval u γ
eval (fst t) γ = π₁ (eval t γ)
eval (snd t) γ = π₂ (eval t γ)
eval unit γ = ∙
eval⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → Γ ⊨⋆ Ξ
eval⋆ {∅} ∙ γ = ∙
eval⋆ {Ξ , A} (ts , t) γ = eval⋆ ts γ , eval t γ
private
instance
canon : Model
canon = record
{ _⊩ᵅ_ = λ Γ P → Γ ⊢ α P
; mono⊩ᵅ = mono⊢
}
reflectᶜ : ∀ {A Γ} → Γ ⊢ A → Γ ⊩ A
reflectᶜ {α P} t = t ⅋ t
reflectᶜ {A ▻ B} t = λ η → let t′ = mono⊢ η t
in t′ ⅋ λ a → reflectᶜ (app t′ (reify a))
reflectᶜ {□ A} t = λ η → let t′ = mono⊢ η t
in t′ ⅋ reflectᶜ (down t′)
reflectᶜ {A ∧ B} t = reflectᶜ (fst t) , reflectᶜ (snd t)
reflectᶜ {⊤} t = ∙
reflectᶜ⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → Γ ⊩⋆ Ξ
reflectᶜ⋆ {∅} ∙ = ∙
reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t
refl⊩⋆ : ∀ {Γ} → Γ ⊩⋆ Γ
refl⊩⋆ = reflectᶜ⋆ refl⊢⋆
trans⊩⋆ : ∀ {Γ Γ′ Γ″} → Γ ⊩⋆ Γ′ → Γ′ ⊩⋆ Γ″ → Γ ⊩⋆ Γ″
trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reify⋆ ts) (reify⋆ us))
quot : ∀ {A Γ} → Γ ⊨ A → Γ ⊢ A
quot s = reify (s refl⊩⋆)
norm : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ A
norm = quot ∘ eval