-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇.
-- Tarski-style semantics with contexts as concrete worlds, and glueing for α, ▻, and □.
-- Implicit syntax.

module A201607.BasicIS4.Semantics.TarskiOvergluedImplicit where

open import A201607.BasicIS4.Syntax.Common public
open import A201607.Common.Semantics public


-- Intuitionistic Tarski models.

record Model : Set₁ where
  infix 3 _⊩ᵅ_
  field
    -- Forcing for atomic propositions; monotonic.
    _⊩ᵅ_   : Cx Ty  Atom  Set
    mono⊩ᵅ :  {P Γ Γ′}  Γ  Γ′  Γ ⊩ᵅ P  Γ′ ⊩ᵅ P

open Model {{…}} public




module ImplicitSyntax
    (_[⊢]_   : Cx Ty  Ty  Set)
    (mono[⊢] :  {A Γ Γ′}  Γ  Γ′  Γ [⊢] A  Γ′ [⊢] A)
  where


  -- Forcing in a particular model.

  module _ {{_ : Model}} where
    infix 3 _⊩_
    _⊩_ : Cx Ty  Ty  Set
    Γ  α P   = Glue (Γ [⊢] (α P)) (Γ ⊩ᵅ P)
    Γ  A  B =  {Γ′}  Γ  Γ′  Glue (Γ′ [⊢] (A  B)) (Γ′  A  Γ′  B)
    Γ   A   =  {Γ′}  Γ  Γ′  Glue (Γ′ [⊢] ( A)) (Γ′  A)
    Γ  A  B = Γ  A × Γ  B
    Γ      = 𝟙

    infix 3 _⊩⋆_
    _⊩⋆_ : Cx Ty  Cx Ty  Set
    Γ ⊩⋆      = 𝟙
    Γ ⊩⋆ Ξ , A = Γ ⊩⋆ Ξ × Γ  A


  -- Monotonicity with respect to context inclusion.

  module _ {{_ : Model}} where
    mono⊩ :  {A Γ Γ′}  Γ  Γ′  Γ  A  Γ′  A
    mono⊩ {α P}   η s = mono[⊢] η (syn s)  mono⊩ᵅ η (sem s)
    mono⊩ {A  B} η s = λ η′  s (trans⊆ η η′)
    mono⊩ { A}   η s = λ η′  s (trans⊆ η η′)
    mono⊩ {A  B} η s = mono⊩ {A} η (π₁ s) , mono⊩ {B} η (π₂ s)
    mono⊩ {}    η s = 

    mono⊩⋆ :  {Ξ Γ Γ′}  Γ  Γ′  Γ ⊩⋆ Ξ  Γ′ ⊩⋆ Ξ
    mono⊩⋆ {}     η         = 
    mono⊩⋆ {Ξ , A} η (ts , t) = mono⊩⋆ {Ξ} η ts , mono⊩ {A} η t


  -- Additional useful equipment.

  module _ {{_ : Model}} where
    _⟪$⟫_ :  {A B Γ}  Γ  A  B  Γ  A  Γ  B
    s ⟪$⟫ a = sem (s refl⊆) a

    ⟪S⟫ :  {A B C Γ}  Γ  A  B  C  Γ  A  B  Γ  A  Γ  C
    ⟪S⟫ s₁ s₂ a = (s₁ ⟪$⟫ a) ⟪$⟫ (s₂ ⟪$⟫ a)

    ⟪↓⟫ :  {A Γ}  Γ   A  Γ  A
    ⟪↓⟫ s = sem (s refl⊆)


  -- Forcing in a particular world of a particular model, for sequents.

  module _ {{_ : Model}} where
    infix 3 _⊩_⇒_
    _⊩_⇒_ : Cx Ty  Cx Ty  Ty  Set
    w  Γ  A = w ⊩⋆ Γ  w  A

    infix 3 _⊩_⇒⋆_
    _⊩_⇒⋆_ : Cx Ty  Cx Ty  Cx Ty  Set
    w  Γ ⇒⋆ Ξ = w ⊩⋆ Γ  w ⊩⋆ Ξ


  -- Entailment, or forcing in all worlds of all models, for sequents.

  infix 3 _⊨_
  _⊨_ : Cx Ty  Ty  Set₁
  Γ  A =  {{_ : Model}} {w : Cx Ty}  w  Γ  A

  infix 3 _⊨⋆_
  _⊨⋆_ : Cx Ty  Cx Ty  Set₁
  Γ ⊨⋆ Ξ =  {{_ : Model}} {w : Cx Ty}  w  Γ ⇒⋆ Ξ


  -- Additional useful equipment, for sequents.

  module _ {{_ : Model}} where
    lookup :  {A Γ w}  A  Γ  w  Γ  A
    lookup top     (γ , a) = a
    lookup (pop i) (γ , b) = lookup i γ

    _⟦$⟧_ :  {A B Γ w}  w  Γ  A  B  w  Γ  A  w  Γ  B
    (s₁ ⟦$⟧ s₂) γ = s₁ γ ⟪$⟫ s₂ γ

    ⟦S⟧ :  {A B C Γ w}  w  Γ  A  B  C  w  Γ  A  B  w  Γ  A  w  Γ  C
    ⟦S⟧ s₁ s₂ a γ = ⟪S⟫ (s₁ γ) (s₂ γ) (a γ)

    ⟦↓⟧ :  {A Γ w}  w  Γ   A  w  Γ  A
    ⟦↓⟧ s γ = ⟪↓⟫ (s γ)

    _⟦,⟧_ :  {A B Γ w}  w  Γ  A  w  Γ  B  w  Γ  A  B
    (a ⟦,⟧ b) γ = a γ , b γ

    ⟦π₁⟧ :  {A B Γ w}  w  Γ  A  B  w  Γ  A
    ⟦π₁⟧ s γ = π₁ (s γ)

    ⟦π₂⟧ :  {A B Γ w}  w  Γ  A  B  w  Γ  B
    ⟦π₂⟧ s γ = π₂ (s γ)