-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇.
-- Gentzen-style formalisation of syntax, after Bierman-de Paiva.
-- Simple terms.

module A201607.BasicIS4.Syntax.Gentzen where

open import A201607.BasicIS4.Syntax.Common public


-- Derivations.

mutual
  infix 3 _⊢_
  data _⊢_ (Γ : Cx Ty) : Ty  Set where
    var      :  {A}    A  Γ  Γ  A
    lam      :  {A B}  Γ , A  B  Γ  A  B
    app      :  {A B}  Γ  A  B  Γ  A  Γ  B
    multibox :  {A Δ}  Γ ⊢⋆ □⋆ Δ  □⋆ Δ  A  Γ   A
    down     :  {A}    Γ   A  Γ  A
    pair     :  {A B}  Γ  A  Γ  B  Γ  A  B
    fst      :  {A B}  Γ  A  B  Γ  A
    snd      :  {A B}  Γ  A  B  Γ  B
    unit     : Γ  

  infix 3 _⊢⋆_
  _⊢⋆_ : Cx Ty  Cx Ty  Set
  Γ ⊢⋆      = 𝟙
  Γ ⊢⋆ Ξ , A = Γ ⊢⋆ Ξ × Γ  A


-- Monotonicity with respect to context inclusion.

mutual
  mono⊢ :  {A Γ Γ′}  Γ  Γ′  Γ  A  Γ′  A
  mono⊢ η (var i)         = var (mono∈ η i)
  mono⊢ η (lam t)         = lam (mono⊢ (keep η) t)
  mono⊢ η (app t u)       = app (mono⊢ η t) (mono⊢ η u)
  mono⊢ η (multibox ts u) = multibox (mono⊢⋆ η ts) u
  mono⊢ η (down t)        = down (mono⊢ η t)
  mono⊢ η (pair t u)      = pair (mono⊢ η t) (mono⊢ η u)
  mono⊢ η (fst t)         = fst (mono⊢ η t)
  mono⊢ η (snd t)         = snd (mono⊢ η t)
  mono⊢ η unit            = unit

  mono⊢⋆ :  {Ξ Γ Γ′}  Γ  Γ′  Γ ⊢⋆ Ξ  Γ′ ⊢⋆ Ξ
  mono⊢⋆ {}     η         = 
  mono⊢⋆ {Ξ , A} η (ts , t) = mono⊢⋆ η ts , mono⊢ η t


-- Shorthand for variables.

v₀ :  {A Γ}  Γ , A  A
v₀ = var i₀

v₁ :  {A B Γ}  Γ , A , B  A
v₁ = var i₁

v₂ :  {A B C Γ}  Γ , A , B , C  A
v₂ = var i₂


-- Reflexivity.

refl⊢⋆ :  {Γ}  Γ ⊢⋆ Γ
refl⊢⋆ {}     = 
refl⊢⋆ {Γ , A} = mono⊢⋆ weak⊆ refl⊢⋆ , v₀


-- Deduction theorem is built-in.

lam⋆ :  {Ξ Γ A}  Γ  Ξ  A  Γ  Ξ ▻⋯▻ A
lam⋆ {}     = I
lam⋆ {Ξ , B} = lam⋆ {Ξ}  lam

lam⋆₀ :  {Γ A}  Γ  A    Γ ▻⋯▻ A
lam⋆₀ {}     = I
lam⋆₀ {Γ , B} = lam⋆₀  lam


-- Detachment theorem.

det :  {A B Γ}  Γ  A  B  Γ , A  B
det t = app (mono⊢ weak⊆ t) v₀

det⋆ :  {Ξ Γ A}  Γ  Ξ ▻⋯▻ A  Γ  Ξ  A
det⋆ {}     = I
det⋆ {Ξ , B} = det  det⋆ {Ξ}

det⋆₀ :  {Γ A}    Γ ▻⋯▻ A  Γ  A
det⋆₀ {}     = I
det⋆₀ {Γ , B} = det  det⋆₀


-- Cut and multicut.

cut :  {A B Γ}  Γ  A  Γ , A  B  Γ  B
cut t u = app (lam u) t

multicut :  {Ξ A Γ}  Γ ⊢⋆ Ξ  Ξ  A  Γ  A
multicut {}             u = mono⊢ bot⊆ u
multicut {Ξ , B} (ts , t) u = app (multicut ts (lam u)) t


-- Transitivity.

trans⊢⋆ :  {Γ″ Γ′ Γ}  Γ ⊢⋆ Γ′  Γ′ ⊢⋆ Γ″  Γ ⊢⋆ Γ″
trans⊢⋆ {}      ts         = 
trans⊢⋆ {Γ″ , A} ts (us , u) = trans⊢⋆ ts us , multicut ts u


-- Contraction.

ccont :  {A B Γ}  Γ  (A  A  B)  A  B
ccont = lam (lam (app (app v₁ v₀) v₀))

cont :  {A B Γ}  Γ , A , A  B  Γ , A  B
cont t = det (app ccont (lam (lam t)))


-- Exchange, or Schönfinkel’s C combinator.

cexch :  {A B C Γ}  Γ  (A  B  C)  B  A  C
cexch = lam (lam (lam (app (app v₂ v₀) v₁)))

exch :  {A B C Γ}  Γ , A , B  C  Γ , B , A  C
exch t = det (det (app cexch (lam (lam t))))


-- Composition, or Schönfinkel’s B combinator.

ccomp :  {A B C Γ}  Γ  (B  C)  (A  B)  A  C
ccomp = lam (lam (lam (app v₂ (app v₁ v₀))))

comp :  {A B C Γ}  Γ , B  C  Γ , A  B  Γ , A  C
comp t u = det (app (app ccomp (lam t)) (lam u))


-- Useful theorems in functional form.

dist :  {A B Γ}  Γ   (A  B)  Γ   A  Γ   B
dist t u = multibox (( , t) , u) (app (down v₁) (down v₀))

up :  {A Γ}  Γ   A  Γ    A
up t = multibox ( , t) v₀

distup :  {A B Γ}  Γ   ( A  B)  Γ   A  Γ   B
distup t u = dist t (up u)

box :  {A Γ}    A  Γ   A
box t = multibox  t

unbox :  {A C Γ}  Γ   A  Γ ,  A  C  Γ  C
unbox t u = app (lam u) t


-- Useful theorems in combinatory form.

ci :  {A Γ}  Γ  A  A
ci = lam v₀

ck :  {A B Γ}  Γ  A  B  A
ck = lam (lam v₁)

cs :  {A B C Γ}  Γ  (A  B  C)  (A  B)  A  C
cs = lam (lam (lam (app (app v₂ v₀) (app v₁ v₀))))

cdist :  {A B Γ}  Γ   (A  B)   A   B
cdist = lam (lam (dist v₁ v₀))

cup :  {A Γ}  Γ   A    A
cup = lam (up v₀)

cdown :  {A Γ}  Γ   A  A
cdown = lam (down v₀)

cdistup :  {A B Γ}  Γ   ( A  B)   A   B
cdistup = lam (lam (dist v₁ (up v₀)))

cunbox :  {A C Γ}  Γ   A  ( A  C)  C
cunbox = lam (lam (app v₀ v₁))

cpair :  {A B Γ}  Γ  A  B  A  B
cpair = lam (lam (pair v₁ v₀))

cfst :  {A B Γ}  Γ  A  B  A
cfst = lam (fst v₀)

csnd :  {A B Γ}  Γ  A  B  B
csnd = lam (snd v₀)


-- Internalisation, or lifting, and additional theorems.

lift :  {Γ A}  Γ  A  □⋆ Γ   A
lift {}     t = box t
lift {Γ , B} t = det (app cdist (lift (lam t)))

hypup :  {A B Γ}  Γ  A  B  Γ   A  B
hypup t = lam (app (mono⊢ weak⊆ t) (down v₀))

hypdown :  {A B Γ}  Γ    A  B  Γ   A  B
hypdown t = lam (app (mono⊢ weak⊆ t) (up v₀))

cxup :  {Γ A}  Γ  A  □⋆ Γ  A
cxup {}     t = t
cxup {Γ , B} t = det (hypup (cxup (lam t)))

cxdown :  {Γ A}  □⋆ □⋆ Γ  A  □⋆ Γ  A
cxdown {}     t = t
cxdown {Γ , B} t = det (hypdown (cxdown (lam t)))

box⋆ :  {Ξ Γ}   ⊢⋆ Ξ  Γ ⊢⋆ □⋆ Ξ
box⋆ {}             = 
box⋆ {Ξ , A} (ts , t) = box⋆ ts , box t

lift⋆ :  {Ξ Γ}  Γ ⊢⋆ Ξ  □⋆ Γ ⊢⋆ □⋆ Ξ
lift⋆ {}             = 
lift⋆ {Ξ , A} (ts , t) = lift⋆ ts , lift t

up⋆ :  {Ξ Γ}  Γ ⊢⋆ □⋆ Ξ  Γ ⊢⋆ □⋆ □⋆ Ξ
up⋆ {}             = 
up⋆ {Ξ , A} (ts , t) = up⋆ ts , up t

down⋆ :  {Ξ Γ}  Γ ⊢⋆ □⋆ Ξ  Γ ⊢⋆ Ξ
down⋆ {}             = 
down⋆ {Ξ , A} (ts , t) = down⋆ ts , down t

dist′ :  {A B Γ}  Γ   (A  B)  Γ   A   B
dist′ t = lam (dist (mono⊢ weak⊆ t) v₀)

mpair :  {A B Γ}  Γ   A  Γ   B  Γ   (A  B)
mpair t u = multibox (( , t) , u) (pair (down v₁) (down v₀))

mfst :  {A B Γ}  Γ   (A  B)  Γ   A
mfst t = multibox ( , t) (fst (down v₀))

msnd :  {A B Γ}  Γ   (A  B)  Γ   B
msnd t = multibox ( , t) (snd (down v₀))


-- Closure under context concatenation.

concat :  {A B Γ} Γ′  Γ , A  B  Γ′  A  Γ  Γ′  B
concat Γ′ t u = app (mono⊢ (weak⊆⧺₁ Γ′) (lam t)) (mono⊢ weak⊆⧺₂ u)


-- Substitution.

mutual
  [_≔_]_ :  {A B Γ}  (i : A  Γ)  Γ  i  A  Γ  B  Γ  i  B
  [ i  s ] var j         with i ≟∈ j
  [ i  s ] var .i        | same   = s
  [ i  s ] var ._        | diff j = var j
  [ i  s ] lam t         = lam ([ pop i  mono⊢ weak⊆ s ] t)
  [ i  s ] app t u       = app ([ i  s ] t) ([ i  s ] u)
  [ i  s ] multibox ts u = multibox ([ i  s ]⋆ ts) u
  [ i  s ] down t        = down ([ i  s ] t)
  [ i  s ] pair t u      = pair ([ i  s ] t) ([ i  s ] u)
  [ i  s ] fst t         = fst ([ i  s ] t)
  [ i  s ] snd t         = snd ([ i  s ] t)
  [ i  s ] unit          = unit

  [_≔_]⋆_ :  {Ξ A Γ}  (i : A  Γ)  Γ  i  A  Γ ⊢⋆ Ξ  Γ  i ⊢⋆ Ξ
  [_≔_]⋆_ {}     i s         = 
  [_≔_]⋆_ {Ξ , B} i s (ts , t) = [ i  s ]⋆ ts , [ i  s ] t


-- Convertibility.

data _⋙_ {Γ : Cx Ty} :  {A}  Γ  A  Γ  A  Set where
  refl⋙      :  {A}  {t : Γ  A}
                       t  t

  trans⋙     :  {A}  {t t′ t″ : Γ  A}
                       t  t′  t′  t″
                       t  t″

  sym⋙       :  {A}  {t t′ : Γ  A}
                       t  t′
                       t′  t

  conglam⋙   :  {A B}  {t t′ : Γ , A  B}
                         t  t′
                         lam t  lam t′

  congapp⋙   :  {A B}  {t t′ : Γ  A  B}  {u u′ : Γ  A}
                         t  t′  u  u′
                         app t u  app t′ u′

  -- TODO: What about multibox?
  congdown⋙  :  {A}  {t t′ : Γ   A}
                       t  t′
                       down t  down t′

  congpair⋙  :  {A B}  {t t′ : Γ  A}  {u u′ : Γ  B}
                         t  t′  u  u′
                         pair t u  pair t′ u′

  congfst⋙   :  {A B}  {t t′ : Γ  A  B}
                         t  t′
                         fst t  fst t′

  congsnd⋙   :  {A B}  {t t′ : Γ  A  B}
                         t  t′
                         snd t  snd t′

  beta▻⋙     :  {A B}  {t : Γ , A  B}  {u : Γ  A}
                         app (lam t) u  ([ top  u ] t)

  eta▻⋙      :  {A B}  {t : Γ  A  B}
                         t  lam (app (mono⊢ weak⊆ t) v₀)

  -- TODO: What about beta and eta for □?
  beta∧₁⋙    :  {A B}  {t : Γ  A}  {u : Γ  B}
                         fst (pair t u)  t

  beta∧₂⋙    :  {A B}  {t : Γ  A}  {u : Γ  B}
                         snd (pair t u)  u

  eta∧⋙      :  {A B}  {t : Γ  A  B}
                         t  pair (fst t) (snd t)

  eta⊤⋙     :  {t : Γ  }  t  unit