{-# OPTIONS --rewriting #-}
module A201801.CMLEnlightenment where
open import A201801.Prelude
open import A201801.Category
open import A201801.List
open import A201801.ListLemmas
open import A201801.ListConcatenation
open import A201801.AllList
open import A201801.CMLPropositions
import A201801.CMLStandardDerivations as CML
infix 3 _⊢_valid[_]
data _⊢_valid[_] : List Assert → Form → List Form → Set
where
vz : ∀ {A Δ Γ} → Δ ⊢ A valid[ Γ , A ]
wk : ∀ {A B Δ Γ} → Δ ⊢ A valid[ Γ ]
→ Δ ⊢ A valid[ Γ , B ]
lam : ∀ {A B Δ Γ} → Δ ⊢ B valid[ Γ , A ]
→ Δ ⊢ A ⊃ B valid[ Γ ]
app : ∀ {A B Δ Γ} → Δ ⊢ A ⊃ B valid[ Γ ] → Δ ⊢ A valid[ Γ ]
→ Δ ⊢ B valid[ Γ ]
mvz! : ∀ {A Ψ Δ} → Δ , ⟪ Ψ ⊫ A ⟫ ⊢ A valid[ Ψ ]
mwk : ∀ {B Ψ A Δ Γ} → Δ ⊢ A valid[ Γ ]
→ Δ , ⟪ Ψ ⊫ B ⟫ ⊢ A valid[ Γ ]
box : ∀ {A Ψ Δ Γ} → Δ ⊢ A valid[ Ψ ]
→ Δ ⊢ [ Ψ ] A valid[ Γ ]
letbox : ∀ {A B Ψ Δ Γ} → Δ ⊢ [ Ψ ] A valid[ Γ ] → Δ , ⟪ Ψ ⊫ A ⟫ ⊢ B valid[ Γ ]
→ Δ ⊢ B valid[ Γ ]
infix 3 _⊢_allvalid[_]
_⊢_allvalid[_] : List Assert → List Form → List Form → Set
Δ ⊢ Ξ allvalid[ Γ ] = All (\ A → Δ ⊢ A valid[ Γ ]) Ξ
infix 3 _⊢_allvalid*
_⊢_allvalid* : List Assert → List Assert → Set
Δ ⊢ Ξ allvalid* = All (\ { ⟪ Γ ⊫ A ⟫ → Δ ⊢ A valid[ Γ ] }) Ξ
wks : ∀ {A Δ Γ Ξ} → Δ ⊢ Ξ allvalid[ Γ ]
→ Δ ⊢ Ξ allvalid[ Γ , A ]
wks ξ = maps wk ξ
lifts : ∀ {A Δ Γ Ξ} → Δ ⊢ Ξ allvalid[ Γ ]
→ Δ ⊢ Ξ , A allvalid[ Γ , A ]
lifts ξ = wks ξ , vz
vars : ∀ {Δ Γ Γ′} → Γ′ ⊇ Γ
→ Δ ⊢ Γ allvalid[ Γ′ ]
vars done = ∙
vars (drop η) = wks (vars η)
vars (keep η) = lifts (vars η)
ids : ∀ {Δ Γ} → Δ ⊢ Γ allvalid[ Γ ]
ids = vars id
mwks : ∀ {A Ψ Δ Γ Ξ} → Δ ⊢ Ξ allvalid[ Γ ]
→ Δ , ⟪ Ψ ⊫ A ⟫ ⊢ Ξ allvalid[ Γ ]
mwks ξ = maps mwk ξ
lams : ∀ {Δ Γ A} → (Ξ : List Form) → Δ ⊢ A valid[ Γ ⧺ Ξ ]
→ Δ ⊢ Ξ ⊃⋯⊃ A valid[ Γ ]
lams ∙ 𝒟 = 𝒟
lams (Ξ , B) 𝒟 = lams Ξ (lam 𝒟)
unlam : ∀ {Δ Γ A B} → Δ ⊢ A ⊃ B valid[ Γ ]
→ Δ ⊢ B valid[ Γ , A ]
unlam 𝒟 = app (wk 𝒟) vz
unlams : ∀ {Δ Γ A} → (Ξ : List Form) → Δ ⊢ Ξ ⊃⋯⊃ A valid[ Γ ]
→ Δ ⊢ A valid[ Γ ⧺ Ξ ]
unlams ∙ 𝒟 = 𝒟
unlams (Ξ , B) 𝒟 = unlam (unlams Ξ 𝒟)
apps : ∀ {Δ Γ Ξ A} → Δ ⊢ Ξ ⊃⋯⊃ A valid[ Γ ] → Δ ⊢ Ξ allvalid[ Γ ]
→ Δ ⊢ A valid[ Γ ]
apps 𝒟 ∙ = 𝒟
apps 𝒟 (ξ , ℰ) = app (apps 𝒟 ξ) ℰ
blam : ∀ {Δ Γ Ψ A B} → Δ ⊢ [ Ψ , A ] B valid[ Γ ]
→ Δ ⊢ [ Ψ ] (A ⊃ B) valid[ Γ ]
blam 𝒟 = letbox 𝒟 (box (lam mvz!))
unblam : ∀ {Δ Γ Ψ A B} → Δ ⊢ [ Ψ ] (A ⊃ B) valid[ Γ ]
→ Δ ⊢ [ Ψ , A ] B valid[ Γ ]
unblam 𝒟 = letbox 𝒟 (box (unlam mvz!))
blams : ∀ {Δ Γ Ψ A} → (Ξ : List Form) → Δ ⊢ [ Ψ ⧺ Ξ ] A valid[ Γ ]
→ Δ ⊢ [ Ψ ] (Ξ ⊃⋯⊃ A) valid[ Γ ]
blams ∙ 𝒟 = 𝒟
blams (Ξ , B) 𝒟 = blams Ξ (blam 𝒟)
unblams : ∀ {Δ Γ Ψ A} → (Ξ : List Form) → Δ ⊢ [ Ψ ] (Ξ ⊃⋯⊃ A) valid[ Γ ]
→ Δ ⊢ [ Ψ ⧺ Ξ ] A valid[ Γ ]
unblams ∙ 𝒟 = 𝒟
unblams (Ξ , B) 𝒟 = unblam (unblams Ξ 𝒟)
var : ∀ {Δ Γ A} → Γ ∋ A
→ Δ ⊢ A valid[ Γ ]
var zero = vz
var (suc i) = wk (var i)
vau : ∀ {Δ Γ Ψ A B} → Δ , ⟪ Ψ ⊫ A ⟫ ⊢ B valid[ Γ ]
→ Δ ⊢ B valid[ Γ , [ Ψ ] A ]
vau 𝒟 = letbox vz (wk 𝒟)
unvau : ∀ {Δ Γ Ψ A B} → Δ ⊢ B valid[ Γ , [ Ψ ] A ]
→ Δ , ⟪ Ψ ⊫ A ⟫ ⊢ B valid[ Γ ]
unvau 𝒟 = app (lam (mwk 𝒟)) (box mvz!)
vaus : ∀ {Δ Γ Ψ Ξ A} → Δ , ⟪ Ψ ⊫ A ⟫ ⊢ Ξ allvalid[ Γ ]
→ Δ ⊢ Ξ allvalid[ Γ , [ Ψ ] A ]
vaus 𝒟 = maps vau 𝒟
mvar! : ∀ {Δ Ψ A} → Δ ∋ ⟪ Ψ ⊫ A ⟫
→ Δ ⊢ A valid[ Ψ ]
mvar! zero = mvz!
mvar! (suc i) = mwk (mvar! i)
unbox : ∀ {Δ Ψ A} → Δ ⊢ [ Ψ ] A valid[ Ψ ]
→ Δ ⊢ A valid[ Ψ ]
unbox 𝒟 = letbox 𝒟 mvz!
⟦_⟧ : ∀ {Δ Γ A} → Δ ⊢ A valid[ Γ ]
→ Δ CML.⊢ A valid[ Γ ]
⟦ vz ⟧ = CML.vz
⟦ wk 𝒟 ⟧ = CML.wk ⟦ 𝒟 ⟧
⟦ lam 𝒟 ⟧ = CML.lam ⟦ 𝒟 ⟧
⟦ app 𝒟 ℰ ⟧ = CML.app ⟦ 𝒟 ⟧ ⟦ ℰ ⟧
⟦ mvz! ⟧ = CML.mvz CML.ids
⟦ mwk 𝒟 ⟧ = CML.mwk ⟦ 𝒟 ⟧
⟦ box 𝒟 ⟧ = CML.box ⟦ 𝒟 ⟧
⟦ letbox 𝒟 ℰ ⟧ = CML.letbox ⟦ 𝒟 ⟧ ⟦ ℰ ⟧