module A201801.CMLPropositions where
open import A201801.Prelude
open import A201801.Category
open import A201801.List
infixr 8 _⊃_
data Form : Set
where
ι_ : String → Form
_⊃_ : Form → Form → Form
[_]_ : List Form → Form → Form
instance
FormVar : IsString Form
FormVar =
record
{ Constraint = \ s → ⊤
; fromString = \ s → ι s
}
record Assert : Set
where
constructor ⟪_⊫_⟫
field
Γ : List Form
A : Form
injι : ∀ {P₁ P₂} → ι P₁ ≡ ι P₂
→ P₁ ≡ P₂
injι refl = refl
inj⊃₁ : ∀ {A₁ A₂ B₁ B₂} → A₁ ⊃ B₁ ≡ A₂ ⊃ B₂
→ A₁ ≡ A₂
inj⊃₁ refl = refl
inj⊃₂ : ∀ {A₁ A₂ B₁ B₂} → A₁ ⊃ B₁ ≡ A₂ ⊃ B₂
→ B₁ ≡ B₂
inj⊃₂ refl = refl
inj[]₁ : ∀ {Ψ₁ Ψ₂ A₁ A₂} → [ Ψ₁ ] A₁ ≡ [ Ψ₂ ] A₂
→ Ψ₁ ≡ Ψ₂
inj[]₁ refl = refl
inj[]₂ : ∀ {Ψ₁ Ψ₂ A₁ A₂} → [ Ψ₁ ] A₁ ≡ [ Ψ₂ ] A₂
→ A₁ ≡ A₂
inj[]₂ refl = refl
mutual
_≟ₚ_ : (A₁ A₂ : Form) → Dec (A₁ ≡ A₂)
(ι P₁) ≟ₚ (ι P₂) with P₁ ≟ₛ P₂
... | yes refl = yes refl
... | no P₁≢P₂ = no (P₁≢P₂ ∘ injι)
(ι P₁) ≟ₚ (A₂ ⊃ B₂) = no (\ ())
(ι P₁) ≟ₚ ([ Ψ₂ ] A₂) = no (\ ())
(A₁ ⊃ B₁) ≟ₚ (ι P₂) = no (\ ())
(A₁ ⊃ B₁) ≟ₚ (A₂ ⊃ B₂) with A₁ ≟ₚ A₂ | B₁ ≟ₚ B₂
... | yes refl | yes refl = yes refl
... | yes refl | no B₁≢B₂ = no (B₁≢B₂ ∘ inj⊃₂)
... | no A₁≢A₂ | _ = no (A₁≢A₂ ∘ inj⊃₁)
(A₁ ⊃ B₁) ≟ₚ ([ Ψ₂ ] A₂) = no (\ ())
([ Ψ₁ ] A₁) ≟ₚ (ι P₂) = no (\ ())
([ Ψ₁ ] A₁) ≟ₚ (A₂ ⊃ B₂) = no (\ ())
([ Ψ₁ ] A₁) ≟ₚ ([ Ψ₂ ] A₂) with Ψ₁ ≟ₚₛ Ψ₂ | A₁ ≟ₚ A₂
... | yes refl | yes refl = yes refl
... | yes refl | no A₁≢A₂ = no (A₁≢A₂ ∘ inj[]₂)
... | no Ψ₁≢Ψ₂ | _ = no (Ψ₁≢Ψ₂ ∘ inj[]₁)
_≟ₚₛ_ : (Ξ₁ Ξ₂ : List Form) → Dec (Ξ₁ ≡ Ξ₂)
∙ ≟ₚₛ ∙ = yes refl
∙ ≟ₚₛ (Ξ₂ , A₂) = no (\ ())
(Ξ₁ , A₁) ≟ₚₛ ∙ = no (\ ())
(Ξ₁ , A₁) ≟ₚₛ (Ξ₂ , A₂) with Ξ₁ ≟ₚₛ Ξ₂ | A₁ ≟ₚ A₂
... | yes refl | yes refl = yes refl
... | yes refl | no A₁≢A₂ = no (A₁≢A₂ ∘ inj,₂)
... | no Ξ₁≢Ξ₂ | _ = no (Ξ₁≢Ξ₂ ∘ inj,₁)
_⊃⋯⊃_ : List Form → Form → Form
∙ ⊃⋯⊃ A = A
(Ξ , B) ⊃⋯⊃ A = Ξ ⊃⋯⊃ (B ⊃ A)