{-# OPTIONS --rewriting #-}
module A201706.ILPSyntaxTerms where
open import A201706.ILP public
-- Contexts.
Cx : Nat → Nat → Set
Cx d g = BoxTy⋆ d ∧ Ty⋆ g
-- Derivations.
infix 3 _⊢_∷_
data _⊢_∷_ {d g} : Cx d g → Tm d g → Ty → Set where
var : ∀ {Δ Γ i A} →
Γ ∋⟨ i ⟩ A →
Δ ⁏ Γ ⊢ VAR i ∷ A
mvar : ∀ {Δ Γ i} {Q : Tm d zero} {A} →
Δ ∋⟨ i ⟩ [ Q ] A →
Δ ⁏ Γ ⊢ MVAR i ∷ A
lam : ∀ {Δ Γ M A B} →
Δ ⁏ Γ , A ⊢ M ∷ B →
Δ ⁏ Γ ⊢ LAM M ∷ A ⇒ B
app : ∀ {Δ Γ M N A B} →
Δ ⁏ Γ ⊢ M ∷ A ⇒ B → Δ ⁏ Γ ⊢ N ∷ A →
Δ ⁏ Γ ⊢ APP M N ∷ B
box : ∀ {Δ Γ M A} →
Δ ⁏ ∅ ⊢ M ∷ A →
Δ ⁏ Γ ⊢ BOX M ∷ [ M ] A
unbox : ∀ {Δ Γ M N} {Q : Tm d zero} {A C} →
Δ ⁏ Γ ⊢ M ∷ [ Q ] A → Δ , [ Q ] A ⁏ Γ ⊢ N ∷ C →
Δ ⁏ Γ ⊢ UNBOX M N ∷ C
-- TODO: What is going on here?
-- mono⊢ : ∀ {d g d′ g′} {Δ : BoxTy⋆ d} {Γ : Ty⋆ g} {Δ′ : BoxTy⋆ d′} {Γ′ : Ty⋆ g′} {M A z e} →
-- Δ′ ⊇⟨ z ⟩ Δ → Γ′ ⊇⟨ e ⟩ Γ → Δ ⁏ Γ ⊢ M ∷ A → Δ′ ⁏ Γ′ ⊢ monoTm z e M ∷ A
-- mono⊢ ζ η (var 𝒾) = var (mono∋ η 𝒾)
-- mono⊢ ζ η (mvar 𝒾) = mvar {!mono∋ ζ 𝒾!}
-- mono⊢ ζ η (lam 𝒟) = lam (mono⊢ ζ (lift η) 𝒟)
-- mono⊢ ζ η (app 𝒟 ℰ) = app (mono⊢ ζ η 𝒟) (mono⊢ ζ η ℰ)
-- mono⊢ ζ η (box 𝒟) = {!box (mono⊢ ζ done 𝒟)!}
-- mono⊢ ζ η (unbox 𝒟 ℰ) = {!unbox (mono⊢ ζ η 𝒟) ?!}