module A201706.ILP where

open import A201706.PreludeVec public


-- Terms.

data Tm (d g : Nat) : Set where
  VAR   : Fin g  Tm d g
  MVAR  : Fin d  Tm d g
  LAM   : Tm d (suc g)  Tm d g
  APP   : Tm d g  Tm d g  Tm d g
  BOX   : Tm d zero  Tm d g
  UNBOX : Tm d g  Tm (suc d) g  Tm d g

Tm⋆ : Nat  Nat  Nat  Set
Tm⋆ d g n = Vec (Tm d g) n

monoTm :  {d g d′ g′}  d′  d  g′  g  Tm d g  Tm d′ g′
monoTm z e (VAR i)     = VAR (monoFin e i)
monoTm z e (MVAR i)    = MVAR (monoFin z i)
monoTm z e (LAM M)     = LAM (monoTm z (lift e) M)
monoTm z e (APP M N)   = APP (monoTm z e M) (monoTm z e N)
monoTm z e (BOX M)     = BOX (monoTm z done M)
monoTm z e (UNBOX M N) = UNBOX (monoTm z e M) (monoTm (lift z) e N)

monoTm⋆ :  {d g d′ g′ n}  d′  d  g′  g  Tm⋆ d g n  Tm⋆ d′ g′ n
monoTm⋆ z e x = map (monoTm z e) x

idmonoTm :  {d g}  (M : Tm d g)  monoTm refl≥ refl≥ M  M
idmonoTm (VAR i)     = cong VAR (idmonoFin i)
idmonoTm (MVAR i)    = cong MVAR (idmonoFin i)
idmonoTm (LAM M)     = cong LAM (idmonoTm M)
idmonoTm (APP M N)   = cong² APP (idmonoTm M) (idmonoTm N)
idmonoTm (BOX M)     = cong BOX (idmonoTm M)
idmonoTm (UNBOX M N) = cong² UNBOX (idmonoTm M) (idmonoTm N)

reflTm⋆ :  {d g}  Tm⋆ d g g
reflTm⋆ {g = zero}  = 
reflTm⋆ {g = suc g} = monoTm⋆ refl≥ (weak refl≥) reflTm⋆ , VAR zero

mreflTm⋆ :  {d g}  Tm⋆ d g d
mreflTm⋆ {zero}  = 
mreflTm⋆ {suc d} = monoTm⋆ (weak refl≥) refl≥ mreflTm⋆ , MVAR zero

lookupTm :  {d g n}  Tm⋆ d g n  Fin n  Tm d g
lookupTm x i = lookup x i

graftTm :  {d g `g}  Tm⋆ d g `g  Tm d `g  Tm d g
graftTm p (VAR i)     = lookupTm p i
graftTm p (MVAR i)    = MVAR i
graftTm p (LAM M)     = LAM (graftTm (monoTm⋆ refl≥ (weak refl≥) p , VAR zero) M)
graftTm p (APP M N)   = APP (graftTm p M) (graftTm p N)
graftTm p (BOX M)     = BOX (graftTm  M)
graftTm p (UNBOX M N) = UNBOX (graftTm p M) (graftTm (monoTm⋆ (weak refl≥) refl≥ p) N)

graftTm⋆ :  {d g `g n}  Tm⋆ d g `g  Tm⋆ d `g n  Tm⋆ d g n
graftTm⋆ p x = map (graftTm p) x

transTm :  {d g g′ g″}  Tm⋆ d g″ g′  Tm⋆ d g′ g  Tm⋆ d g″ g
transTm = graftTm⋆

mgraftTm :  {d g `d}  Tm⋆ d zero `d  Tm `d g  Tm d g
mgraftTm q (VAR i)     = VAR i
mgraftTm q (MVAR i)    = UNBOX (monoTm refl≥ inf≥ (lookupTm q i)) (MVAR zero)
mgraftTm q (LAM M)     = LAM (mgraftTm q M)
mgraftTm q (APP M N)   = APP (mgraftTm q M) (mgraftTm q N)
mgraftTm q (BOX M)     = BOX (mgraftTm q M)
mgraftTm q (UNBOX M N) = UNBOX (mgraftTm q M) (mgraftTm (monoTm⋆ (weak refl≥) refl≥ q , BOX (MVAR zero)) N)


-- Types and vectors of types.

mutual
  infixr 7 _⇒_
  data Ty : Set where
        : Ty
    _⇒_ : Ty  Ty  Ty
    [_]_ :  {d}  Tm d zero  Ty  Ty

  record BoxTy : Set where
    inductive
    constructor [_]_
    field
      {d} : Nat
      M   : Tm d zero
      A   : Ty

  Ty⋆ : Nat  Set
  Ty⋆ g = Vec Ty g

  BoxTy⋆ : Nat  Set
  BoxTy⋆ d = Vec BoxTy d