module A201607.OlderBasicILP.Indirect.Gentzen where
open import A201607.OlderBasicILP.Indirect public
mutual
data Tm : Set where
VAR : ℕ → Tm
LAM : Tm → Tm
APP : Tm → Tm → Tm
MULTIBOX : Cx Tm → Tm → Tm
DOWN : Tm → Tm
PAIR : Tm → Tm → Tm
FST : Tm → Tm
SND : Tm → Tm
UNIT : Tm
infix 3 _⊢_
data _⊢_ (Γ : Cx (Ty Tm)) : Ty Tm → Set where
var : ∀ {A} → A ∈ Γ → Γ ⊢ A
lam : ∀ {A B} → Γ , A ⊢ B → Γ ⊢ A ▻ B
app : ∀ {A B} → Γ ⊢ A ▻ B → Γ ⊢ A → Γ ⊢ B
multibox : ∀ {n A} {SS : VCx Tm n} {Ξ : VCx (Ty Tm) n}
→ Γ ⊢⋆ SS ⦂⋆ Ξ → (u : SS ⦂⋆ Ξ ⊢ A)
→ Γ ⊢ [ u ] ⦂ A
down : ∀ {A T} → Γ ⊢ T ⦂ A → Γ ⊢ A
pair : ∀ {A B} → Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ∧ B
fst : ∀ {A B} → Γ ⊢ A ∧ B → Γ ⊢ A
snd : ∀ {A B} → Γ ⊢ A ∧ B → Γ ⊢ B
unit : Γ ⊢ ⊤
infix 3 _⊢⋆_
_⊢⋆_ : Cx (Ty Tm) → Cx (Ty Tm) → Set
Γ ⊢⋆ ∅ = 𝟙
Γ ⊢⋆ Ξ , A = Γ ⊢⋆ Ξ × Γ ⊢ A
[_] : ∀ {A Γ} → Γ ⊢ A → Tm
[ var i ] = VAR [ i ]ⁱ
[ lam t ] = LAM [ t ]
[ app t u ] = APP [ t ] [ u ]
[ multibox ts u ] = MULTIBOX [ ts ]⋆ [ u ]
[ down t ] = DOWN [ t ]
[ pair t u ] = PAIR [ t ] [ u ]
[ fst t ] = FST [ t ]
[ snd t ] = SND [ t ]
[ unit ] = UNIT
[_]⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → Cx Tm
[_]⋆ {∅} ∙ = ∅
[_]⋆ {Ξ , A} (ts , t) = [ ts ]⋆ , [ t ]
mutual
mono⊢ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢ A → Γ′ ⊢ A
mono⊢ η (var i) = var (mono∈ η i)
mono⊢ η (lam t) = lam (mono⊢ (keep η) t)
mono⊢ η (app t u) = app (mono⊢ η t) (mono⊢ η u)
mono⊢ η (multibox ts u) = multibox (mono⊢⋆ η ts) u
mono⊢ η (down t) = down (mono⊢ η t)
mono⊢ η (pair t u) = pair (mono⊢ η t) (mono⊢ η u)
mono⊢ η (fst t) = fst (mono⊢ η t)
mono⊢ η (snd t) = snd (mono⊢ η t)
mono⊢ η unit = unit
mono⊢⋆ : ∀ {Ξ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢⋆ Ξ → Γ′ ⊢⋆ Ξ
mono⊢⋆ {∅} η ∙ = ∙
mono⊢⋆ {Ξ , A} η (ts , t) = mono⊢⋆ η ts , mono⊢ η t
V₀ : Tm
V₀ = VAR 0
V₁ : Tm
V₁ = VAR 1
V₂ : Tm
V₂ = VAR 2
v₀ : ∀ {A Γ} → Γ , A ⊢ A
v₀ = var i₀
v₁ : ∀ {A B Γ} → (Γ , A) , B ⊢ A
v₁ = var i₁
v₂ : ∀ {A B C Γ} → ((Γ , A) , B) , C ⊢ A
v₂ = var i₂
refl⊢⋆ : ∀ {Γ} → Γ ⊢⋆ Γ
refl⊢⋆ {∅} = ∙
refl⊢⋆ {Γ , A} = mono⊢⋆ weak⊆ refl⊢⋆ , v₀
DET : Tm → Tm
DET T = APP T V₀
det : ∀ {A B Γ} → Γ ⊢ A ▻ B → Γ , A ⊢ B
det t = app (mono⊢ weak⊆ t) v₀
CUT : Tm → Tm → Tm
CUT T U = APP (LAM U) T
MULTICUT : Cx Tm → Tm → Tm
MULTICUT ∅ U = U
MULTICUT (TS , T) U = APP (MULTICUT TS (LAM U)) T
cut : ∀ {A B Γ} → Γ ⊢ A → Γ , A ⊢ B → Γ ⊢ B
cut t u = app (lam u) t
multicut : ∀ {Ξ A Γ} → Γ ⊢⋆ Ξ → Ξ ⊢ A → Γ ⊢ A
multicut {∅} ∙ u = mono⊢ bot⊆ u
multicut {Ξ , B} (ts , t) u = app (multicut ts (lam u)) t
trans⊢⋆ : ∀ {Γ″ Γ′ Γ} → Γ ⊢⋆ Γ′ → Γ′ ⊢⋆ Γ″ → Γ ⊢⋆ Γ″
trans⊢⋆ {∅} ts ∙ = ∙
trans⊢⋆ {Γ″ , A} ts (us , u) = trans⊢⋆ ts us , multicut ts u
CCONT : Tm
CCONT = LAM (LAM (APP (APP V₁ V₀) V₀))
CONT : Tm → Tm
CONT T = DET (APP CCONT (LAM (LAM T)))
ccont : ∀ {A B Γ} → Γ ⊢ (A ▻ A ▻ B) ▻ A ▻ B
ccont = lam (lam (app (app v₁ v₀) v₀))
cont : ∀ {A B Γ} → Γ , A , A ⊢ B → Γ , A ⊢ B
cont t = det (app ccont (lam (lam t)))
CEXCH : Tm
CEXCH = LAM (LAM (LAM (APP (APP V₂ V₀) V₁)))
EXCH : Tm → Tm
EXCH T = DET (DET (APP CEXCH (LAM (LAM T))))
cexch : ∀ {A B C Γ} → Γ ⊢ (A ▻ B ▻ C) ▻ B ▻ A ▻ C
cexch = lam (lam (lam (app (app v₂ v₀) v₁)))
exch : ∀ {A B C Γ} → Γ , A , B ⊢ C → Γ , B , A ⊢ C
exch t = det (det (app cexch (lam (lam t))))
CCOMP : Tm
CCOMP = LAM (LAM (LAM (APP V₂ (APP V₁ V₀))))
COMP : Tm → Tm → Tm
COMP T U = DET (APP (APP CCOMP (LAM T)) (LAM U))
ccomp : ∀ {A B C Γ} → Γ ⊢ (B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
ccomp = lam (lam (lam (app v₂ (app v₁ v₀))))
comp : ∀ {A B C Γ} → Γ , B ⊢ C → Γ , A ⊢ B → Γ , A ⊢ C
comp t u = det (app (app ccomp (lam t)) (lam u))
DIST : Tm → Tm → Tm
DIST T U = MULTIBOX ((∅ , T) , U) (APP (DOWN V₁) (DOWN V₀))
UP : Tm → Tm
UP T = MULTIBOX (∅ , T) V₀
DISTUP : Tm → Tm → Tm
DISTUP T U = DIST T (UP U)
BOX : Tm → Tm
BOX T = MULTIBOX ∅ T
UNBOX : Tm → Tm → Tm
UNBOX T U = APP (LAM U) T
dist : ∀ {A B T U Γ}
→ (t : Γ ⊢ T ⦂ (A ▻ B)) → (u : Γ ⊢ U ⦂ A)
→ Γ ⊢ APP (DOWN V₁) (DOWN V₀) ⦂ B
dist t u = multibox ((∙ , t) , u) (app (down v₁) (down v₀))
up : ∀ {A T Γ}
→ Γ ⊢ T ⦂ A
→ Γ ⊢ V₀ ⦂ T ⦂ A
up t = multibox (∙ , t) v₀
distup : ∀ {A B T U Γ}
→ (t : Γ ⊢ T ⦂ (U ⦂ A ▻ B)) → (u : Γ ⊢ U ⦂ A)
→ Γ ⊢ APP (DOWN V₁) (DOWN V₀) ⦂ B
distup t u = dist t (up u)
box : ∀ {A Γ}
→ (t : ∅ ⊢ A)
→ Γ ⊢ [ t ] ⦂ A
box t = multibox ∙ t
unbox : ∀ {A C T U Γ}
→ Γ ⊢ T ⦂ A → Γ , T ⦂ A ⊢ U ⦂ C
→ Γ ⊢ U ⦂ C
unbox t u = app (lam u) t
CI : Tm
CI = LAM V₀
CK : Tm
CK = LAM (LAM V₁)
CS : Tm
CS = LAM (LAM (LAM (APP (APP V₂ V₀) (APP V₁ V₀))))
CDIST : Tm
CDIST = LAM (LAM (DIST V₁ V₀))
CUP : Tm
CUP = LAM (UP V₀)
CDOWN : Tm
CDOWN = LAM (DOWN V₀)
CDISTUP : Tm
CDISTUP = LAM (LAM (DIST V₁ (UP V₀)))
CUNBOX : Tm
CUNBOX = LAM (LAM (APP V₀ V₁))
CPAIR : Tm
CPAIR = LAM (LAM (PAIR V₁ V₀))
CFST : Tm
CFST = LAM (FST V₀)
CSND : Tm
CSND = LAM (SND V₀)
ci : ∀ {A Γ} → Γ ⊢ A ▻ A
ci = lam v₀
ck : ∀ {A B Γ} → Γ ⊢ A ▻ B ▻ A
ck = lam (lam v₁)
cs : ∀ {A B C Γ} → Γ ⊢ (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
cs = lam (lam (lam (app (app v₂ v₀) (app v₁ v₀))))
cdist : ∀ {A B T U Γ}
→ Γ ⊢ T ⦂ (A ▻ B) ▻ U ⦂ A ▻ APP (DOWN V₁) (DOWN V₀) ⦂ B
cdist = lam (lam (dist v₁ v₀))
cup : ∀ {A T Γ} → Γ ⊢ T ⦂ A ▻ V₀ ⦂ T ⦂ A
cup = lam (up v₀)
cdown : ∀ {A T Γ} → Γ ⊢ T ⦂ A ▻ A
cdown = lam (down v₀)
cdistup : ∀ {A B T U Γ}
→ Γ ⊢ T ⦂ (U ⦂ A ▻ B) ▻ U ⦂ A ▻ APP (DOWN V₁) (DOWN V₀) ⦂ B
cdistup = lam (lam (dist v₁ (up v₀)))
cunbox : ∀ {A C T Γ} → Γ ⊢ T ⦂ A ▻ (T ⦂ A ▻ C) ▻ C
cunbox = lam (lam (app v₀ v₁))
cpair : ∀ {A B Γ} → Γ ⊢ A ▻ B ▻ A ∧ B
cpair = lam (lam (pair v₁ v₀))
cfst : ∀ {A B Γ} → Γ ⊢ A ∧ B ▻ A
cfst = lam (fst v₀)
csnd : ∀ {A B Γ} → Γ ⊢ A ∧ B ▻ B
csnd = lam (snd v₀)
concat : ∀ {A B Γ} Γ′ → Γ , A ⊢ B → Γ′ ⊢ A → Γ ⧺ Γ′ ⊢ B
concat Γ′ t u = app (mono⊢ (weak⊆⧺₁ Γ′) (lam t)) (mono⊢ weak⊆⧺₂ u)
mutual
[_≔_]_ : ∀ {A B Γ} → (i : A ∈ Γ) → Γ ∖ i ⊢ A → Γ ⊢ B → Γ ∖ i ⊢ B
[ i ≔ s ] var j with i ≟∈ j
[ i ≔ s ] var .i | same = s
[ i ≔ s ] var ._ | diff j = var j
[ i ≔ s ] lam t = lam ([ pop i ≔ mono⊢ weak⊆ s ] t)
[ i ≔ s ] app t u = app ([ i ≔ s ] t) ([ i ≔ s ] u)
[ i ≔ s ] multibox ts u = multibox ([ i ≔ s ]⋆ ts) u
[ i ≔ s ] down t = down ([ i ≔ s ] t)
[ i ≔ s ] pair t u = pair ([ i ≔ s ] t) ([ i ≔ s ] u)
[ i ≔ s ] fst t = fst ([ i ≔ s ] t)
[ i ≔ s ] snd t = snd ([ i ≔ s ] t)
[ i ≔ s ] unit = unit
[_≔_]⋆_ : ∀ {Ξ A Γ} → (i : A ∈ Γ) → Γ ∖ i ⊢ A → Γ ⊢⋆ Ξ → Γ ∖ i ⊢⋆ Ξ
[_≔_]⋆_ {∅} i s ∙ = ∙
[_≔_]⋆_ {Ξ , B} i s (ts , t) = [ i ≔ s ]⋆ ts , [ i ≔ s ] t