{-# OPTIONS --sized-types #-}
module A201607.OlderBasicILP.Indirect where
open import A201607.Common.Context public
-- Propositions of intuitionistic logic of proofs, without ∨, ⊥, or +.
infixr 10 _⦂_
infixl 9 _∧_
infixr 7 _▻_
data Ty (X : Set) : Set where
α_ : Atom → Ty X
_▻_ : Ty X → Ty X → Ty X
_⦂_ : X → Ty X → Ty X
_∧_ : Ty X → Ty X → Ty X
⊤ : Ty X
module _ {X : Set} where
infix 7 _▻◅_
_▻◅_ : Ty X → Ty X → Ty X
A ▻◅ B = (A ▻ B) ∧ (B ▻ A)
-- Additional useful propositions.
_⦂⋆_ : ∀ {n} → VCx X n → VCx (Ty X) n → Cx (Ty X)
∅ ⦂⋆ ∅ = ∅
(TS , T) ⦂⋆ (Ξ , A) = (TS ⦂⋆ Ξ) , (T ⦂ A)