module A201607.OlderBasicILP.Indirect where open import A201607.Common.Context public -- Propositions of intuitionistic logic of proofs, without ∨, ⊥, or +. infixr 10 _⦂_ infixl 9 _∧_ infixr 7 _▻_ data Ty (X : Set) : Set where α_ : Atom → Ty X _▻_ : Ty X → Ty X → Ty X _⦂_ : X → Ty X → Ty X _∧_ : Ty X → Ty X → Ty X ⊤ : Ty X module _ {X : Set} where infix 7 _▻◅_ _▻◅_ : Ty X → Ty X → Ty X A ▻◅ B = (A ▻ B) ∧ (B ▻ A) -- Additional useful propositions. _⦂⋆_ : ∀ {n} → VCx X n → VCx (Ty X) n → Cx (Ty X) ∅ ⦂⋆ ∅ = ∅ (TS , T) ⦂⋆ (Ξ , A) = (TS ⦂⋆ Ξ) , (T ⦂ A)