module A201607.BasicIS4.Metatheory.Hilbert-TarskiOvergluedImplicit where
open import A201607.BasicIS4.Syntax.Hilbert public
open import A201607.BasicIS4.Semantics.TarskiOvergluedImplicit public
open ImplicitSyntax (_⊢_) (mono⊢) public
module _ {{_ : Model}} where
reify : ∀ {A Γ} → Γ ⊩ A → Γ ⊢ A
reify {α P} s = syn s
reify {A ▻ B} s = syn (s refl⊆)
reify {□ A} s = syn (s refl⊆)
reify {A ∧ B} s = pair (reify (π₁ s)) (reify (π₂ s))
reify {⊤} s = unit
reify⋆ : ∀ {Ξ Γ} → Γ ⊩⋆ Ξ → Γ ⊢⋆ Ξ
reify⋆ {∅} ∙ = ∙
reify⋆ {Ξ , A} (ts , t) = reify⋆ ts , reify t
module _ {{_ : Model}} where
⟪K⟫ : ∀ {A B Γ} → Γ ⊩ A → Γ ⊩ B ▻ A
⟪K⟫ {A} a η = let a′ = mono⊩ {A} η a
in app ck (reify a′) ⅋ K a′
⟪S⟫′ : ∀ {A B C Γ} → Γ ⊩ A ▻ B ▻ C → Γ ⊩ (A ▻ B) ▻ A ▻ C
⟪S⟫′ {A} {B} {C} s₁ η = let s₁′ = mono⊩ {A ▻ B ▻ C} η s₁
t = syn (s₁′ refl⊆)
in app cs t ⅋ λ s₂ η′ →
let s₁″ = mono⊩ {A ▻ B ▻ C} (trans⊆ η η′) s₁
s₂′ = mono⊩ {A ▻ B} η′ s₂
t′ = syn (s₁″ refl⊆)
u = syn (s₂′ refl⊆)
in app (app cs t′) u ⅋ ⟪S⟫ s₁″ s₂′
_⟪D⟫_ : ∀ {A B Γ} → Γ ⊩ □ (A ▻ B) → Γ ⊩ □ A → Γ ⊩ □ B
(s₁ ⟪D⟫ s₂) η = let t ⅋ s₁′ = s₁ η
u ⅋ a = s₂ η
in app (app cdist t) u ⅋ s₁′ ⟪$⟫ a
_⟪D⟫′_ : ∀ {A B Γ} → Γ ⊩ □ (A ▻ B) → Γ ⊩ □ A ▻ □ B
_⟪D⟫′_ {A} {B} s₁ η = let s₁′ = mono⊩ {□ (A ▻ B)} η s₁
in app cdist (reify (λ {_} η′ → s₁′ η′ )) ⅋ _⟪D⟫_ s₁′
⟪↑⟫ : ∀ {A Γ} → Γ ⊩ □ A → Γ ⊩ □ □ A
⟪↑⟫ s η = app cup (syn (s η)) ⅋ λ η′ → s (trans⊆ η η′)
_⟪,⟫′_ : ∀ {A B Γ} → Γ ⊩ A → Γ ⊩ B ▻ A ∧ B
_⟪,⟫′_ {A} a η = let a′ = mono⊩ {A} η a
in app cpair (reify a′) ⅋ _,_ a′
eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A
eval (var i) γ = lookup i γ
eval (app t u) γ = eval t γ ⟪$⟫ eval u γ
eval ci γ = K (ci ⅋ I)
eval ck γ = K (ck ⅋ ⟪K⟫)
eval cs γ = K (cs ⅋ ⟪S⟫′)
eval (box t) γ = K (box t ⅋ eval t ∙)
eval cdist γ = K (cdist ⅋ _⟪D⟫′_)
eval cup γ = K (cup ⅋ ⟪↑⟫)
eval cdown γ = K (cdown ⅋ ⟪↓⟫)
eval cpair γ = K (cpair ⅋ _⟪,⟫′_)
eval cfst γ = K (cfst ⅋ π₁)
eval csnd γ = K (csnd ⅋ π₂)
eval unit γ = ∙
private
instance
canon : Model
canon = record
{ _⊩ᵅ_ = λ Γ P → Γ ⊢ α P
; mono⊩ᵅ = mono⊢
}
reflectᶜ : ∀ {A Γ} → Γ ⊢ A → Γ ⊩ A
reflectᶜ {α P} t = t ⅋ t
reflectᶜ {A ▻ B} t = λ η → let t′ = mono⊢ η t
in t′ ⅋ λ a → reflectᶜ (app t′ (reify a))
reflectᶜ {□ A} t = λ η → let t′ = mono⊢ η t
in t′ ⅋ reflectᶜ (down t′)
reflectᶜ {A ∧ B} t = reflectᶜ (fst t) , reflectᶜ (snd t)
reflectᶜ {⊤} t = ∙
reflectᶜ⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → Γ ⊩⋆ Ξ
reflectᶜ⋆ {∅} ∙ = ∙
reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t
refl⊩⋆ : ∀ {Γ} → Γ ⊩⋆ Γ
refl⊩⋆ = reflectᶜ⋆ refl⊢⋆
trans⊩⋆ : ∀ {Γ Γ′ Γ″} → Γ ⊩⋆ Γ′ → Γ′ ⊩⋆ Γ″ → Γ ⊩⋆ Γ″
trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reify⋆ ts) (reify⋆ us))
quot : ∀ {A Γ} → Γ ⊨ A → Γ ⊢ A
quot s = reify (s refl⊩⋆)
norm : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ A
norm = quot ∘ eval