module A201607.BasicIS4.Metatheory.Gentzen-TarskiOvergluedGentzen where
open import A201607.BasicIS4.Syntax.Gentzen public
open import A201607.BasicIS4.Semantics.TarskiOvergluedGentzen public
module _ {{_ : Model}} where
mutual
[_] : ∀ {A Γ} → Γ ⊢ A → Γ [⊢] A
[ var i ] = [var] i
[ lam t ] = [lam] [ t ]
[ app t u ] = [app] [ t ] [ u ]
[ multibox ts u ] = [multibox] ([⊢]⋆→[⊢⋆] [ ts ]⋆) [ u ]
[ down t ] = [down] [ t ]
[ pair t u ] = [pair] [ t ] [ u ]
[ fst t ] = [fst] [ t ]
[ snd t ] = [snd] [ t ]
[ unit ] = [unit]
[_]⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → Γ [⊢]⋆ Ξ
[_]⋆ {∅} ∙ = ∙
[_]⋆ {Ξ , A} (ts , t) = [ ts ]⋆ , [ t ]
mutual
eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A
eval (var i) γ = lookup i γ
eval (lam t) γ = λ η → let γ′ = mono⊩⋆ η γ
in [multicut] (reifyʳ⋆ γ′) [ lam t ] ⅋ λ a →
eval t (γ′ , a)
eval (app t u) γ = eval t γ ⟪$⟫ eval u γ
eval (multibox ts u) γ = λ η → let γ′ = mono⊩⋆ η γ
in [multicut] (reifyʳ⋆ γ′) [ multibox ts u ] ⅋
eval u (eval⋆ ts γ′)
eval (down t) γ = ⟪↓⟫ (eval t γ)
eval (pair t u) γ = eval t γ , eval u γ
eval (fst t) γ = π₁ (eval t γ)
eval (snd t) γ = π₂ (eval t γ)
eval unit γ = ∙
eval⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → Γ ⊨⋆ Ξ
eval⋆ {∅} ∙ γ = ∙
eval⋆ {Ξ , A} (ts , t) γ = eval⋆ ts γ , eval t γ
private
instance
canon : Model
canon = record
{ _⊩ᵅ_ = λ Γ P → Γ ⊢ α P
; mono⊩ᵅ = mono⊢
; _[⊢]_ = _⊢_
; _[⊢⋆]_ = _⊢⋆_
; mono[⊢] = mono⊢
; [var] = var
; [lam] = lam
; [app] = app
; [multibox] = multibox
; [down] = down
; [pair] = pair
; [fst] = fst
; [snd] = snd
; [unit] = unit
; top[⊢⋆] = refl
; pop[⊢⋆] = refl
}
mutual
reflectᶜ : ∀ {A Γ} → Γ ⊢ A → Γ ⊩ A
reflectᶜ {α P} t = t ⅋ t
reflectᶜ {A ▻ B} t = λ η → let t′ = mono⊢ η t
in t′ ⅋ λ a → reflectᶜ (app t′ (reifyᶜ a))
reflectᶜ {□ A} t = λ η → let t′ = mono⊢ η t
in t′ ⅋ reflectᶜ (down t′)
reflectᶜ {A ∧ B} t = reflectᶜ (fst t) , reflectᶜ (snd t)
reflectᶜ {⊤} t = ∙
reifyᶜ : ∀ {A Γ} → Γ ⊩ A → Γ ⊢ A
reifyᶜ {α P} s = syn s
reifyᶜ {A ▻ B} s = syn (s refl⊆)
reifyᶜ {□ A} s = syn (s refl⊆)
reifyᶜ {A ∧ B} s = pair (reifyᶜ (π₁ s)) (reifyᶜ (π₂ s))
reifyᶜ {⊤} s = unit
reflectᶜ⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → Γ ⊩⋆ Ξ
reflectᶜ⋆ {∅} ∙ = ∙
reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t
reifyᶜ⋆ : ∀ {Ξ Γ} → Γ ⊩⋆ Ξ → Γ ⊢⋆ Ξ
reifyᶜ⋆ {∅} ∙ = ∙
reifyᶜ⋆ {Ξ , A} (ts , t) = reifyᶜ⋆ ts , reifyᶜ t
refl⊩⋆ : ∀ {Γ} → Γ ⊩⋆ Γ
refl⊩⋆ = reflectᶜ⋆ refl⊢⋆
trans⊩⋆ : ∀ {Γ Γ′ Γ″} → Γ ⊩⋆ Γ′ → Γ′ ⊩⋆ Γ″ → Γ ⊩⋆ Γ″
trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reifyᶜ⋆ ts) (reifyᶜ⋆ us))
quot : ∀ {A Γ} → Γ ⊨ A → Γ ⊢ A
quot s = reifyᶜ (s refl⊩⋆)
norm : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ A
norm = quot ∘ eval