module A201607.BasicIS4.Metatheory.Gentzen-TarskiGluedImplicit where
open import A201607.BasicIS4.Syntax.Gentzen public
open import A201607.BasicIS4.Semantics.TarskiGluedImplicit public
open ImplicitSyntax (_⊢_) public
postulate
reify⋆ : ∀ {{_ : Model}} {Ξ Γ} → Γ ⊩⋆ Ξ → Γ ⊢⋆ Ξ
mutual
eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A
eval (var i) γ = lookup i γ
eval (lam t) γ = λ η a → eval t (mono⊩⋆ η γ , a)
eval (app {A} {B} t u) γ = _⟪$⟫_ {A} {B} (eval t γ) (eval u γ)
eval (multibox ts u) γ = λ η → let γ′ = mono⊩⋆ η γ
in multicut (reify⋆ γ′) (multibox ts u) ⅋
eval u (eval⋆ ts γ′)
eval (down t) γ = ⟪↓⟫ (eval t γ)
eval (pair t u) γ = eval t γ , eval u γ
eval (fst t) γ = π₁ (eval t γ)
eval (snd t) γ = π₂ (eval t γ)
eval unit γ = ∙
eval⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → Γ ⊨⋆ Ξ
eval⋆ {∅} ∙ γ = ∙
eval⋆ {Ξ , A} (ts , t) γ = eval⋆ ts γ , eval t γ
private
instance
canon : Model
canon = record
{ _⊩ᵅ_ = λ Γ P → Γ ⊢ α P
; mono⊩ᵅ = mono⊢
}
mutual
reflectᶜ : ∀ {A Γ} → Γ ⊢ A → Γ ⊩ A
reflectᶜ {α P} t = t
reflectᶜ {A ▻ B} t = λ η → let t′ = mono⊢ η t
in λ a → reflectᶜ (app t′ (reifyᶜ a))
reflectᶜ {□ A} t = λ η → let t′ = mono⊢ η t
in t′ ⅋ reflectᶜ (down t′)
reflectᶜ {A ∧ B} t = reflectᶜ (fst t) , reflectᶜ (snd t)
reflectᶜ {⊤} t = ∙
reifyᶜ : ∀ {A Γ} → Γ ⊩ A → Γ ⊢ A
reifyᶜ {α P} s = s
reifyᶜ {A ▻ B} s = lam (reifyᶜ (s weak⊆ (reflectᶜ {A} v₀)))
reifyᶜ {□ A} s = syn (s refl⊆)
reifyᶜ {A ∧ B} s = pair (reifyᶜ (π₁ s)) (reifyᶜ (π₂ s))
reifyᶜ {⊤} s = unit
reflectᶜ⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → Γ ⊩⋆ Ξ
reflectᶜ⋆ {∅} ∙ = ∙
reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t
reifyᶜ⋆ : ∀ {Ξ Γ} → Γ ⊩⋆ Ξ → Γ ⊢⋆ Ξ
reifyᶜ⋆ {∅} ∙ = ∙
reifyᶜ⋆ {Ξ , A} (ts , t) = reifyᶜ⋆ ts , reifyᶜ t
refl⊩⋆ : ∀ {Γ} → Γ ⊩⋆ Γ
refl⊩⋆ = reflectᶜ⋆ refl⊢⋆
trans⊩⋆ : ∀ {Γ Γ′ Γ″} → Γ ⊩⋆ Γ′ → Γ′ ⊩⋆ Γ″ → Γ ⊩⋆ Γ″
trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reifyᶜ⋆ ts) (reifyᶜ⋆ us))
quot : ∀ {A Γ} → Γ ⊨ A → Γ ⊢ A
quot s = reifyᶜ (s refl⊩⋆)
norm : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ A
norm = quot ∘ eval