module A201607.BasicIS4.Metatheory.Gentzen-BasicKripkeAlechina where
open import A201607.BasicIS4.Syntax.Gentzen public
open import A201607.BasicIS4.Semantics.BasicKripkeAlechina public
mutual
eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A
eval (var i) γ = lookup i γ
eval (lam t) γ = λ ξ a → eval t (mono⊩⋆ ξ γ , a)
eval (app {A} {B} t u) γ = _⟪$⟫_ {A} {B} (eval t γ) (eval u γ)
eval (multibox ts u) γ = λ ξ ζ → eval u (thing ts γ ξ ζ)
eval (down {A} t) γ = ⟪↓⟫ {A} (eval t γ)
eval (pair t u) γ = eval t γ , eval u γ
eval (fst t) γ = π₁ (eval t γ)
eval (snd t) γ = π₂ (eval t γ)
eval unit γ = ∙
thing : ∀ {{_ : Model}} {Δ Γ} {w : World}
→ Γ ⊢⋆ □⋆ Δ → w ⊩⋆ Γ → ∀ {w′ : World} → w ≤ w′ → ∀ {v′ : World} → w′ R v′ → v′ ⊩⋆ □⋆ Δ
thing {∅} ∙ γ ξ ζ = ∙
thing {Δ , B} (ts , t) γ ξ ζ = thing ts γ ξ ζ , λ ξ′ ζ′ →
let _ , (ξ″ , ζ″) = R⨾≤→≤⨾R (_ , (ζ , ξ′))
in eval t γ (trans≤ ξ ξ″) (transR ζ″ ζ′)
eval⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → Γ ⊨⋆ Ξ
eval⋆ {∅} ∙ γ = ∙
eval⋆ {Ξ , A} (ts , t) γ = eval⋆ ts γ , eval t γ