module A201607.BasicIS4.Metatheory.DyadicHilbert-TarskiGluedDyadicImplicit where
open import A201607.BasicIS4.Syntax.DyadicHilbert public
open import A201607.BasicIS4.Semantics.TarskiGluedDyadicImplicit public
open ImplicitSyntax (_⊢_) public
module _ {{_ : Model}} where
_⟪D⟫_ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊩ □ (A ▻ B) → Γ ⁏ Δ ⊩ □ A → Γ ⁏ Δ ⊩ □ B
_⟪D⟫_ {A} {B} s₁ s₂ ψ = let t ⅋ s₁′ = s₁ ψ
u ⅋ a = s₂ ψ
in app (app cdist t) u ⅋ _⟪$⟫_ {A} {B} s₁′ a
_⟪D⟫′_ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊩ □ (A ▻ B) → Γ ⁏ Δ ⊩ □ A ▻ □ B
_⟪D⟫′_ {A} {B} s₁ ψ = _⟪D⟫_ (mono²⊩ {□ (A ▻ B)} ψ s₁)
⟪↑⟫ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊩ □ A → Γ ⁏ Δ ⊩ □ □ A
⟪↑⟫ s ψ = app cup (syn (s ψ)) ⅋ λ ψ′ → s (trans⊆² ψ ψ′)
postulate
reify⋆ : ∀ {{_ : Model}} {Ξ Γ Δ} → Γ ⁏ Δ ⊩⋆ Ξ → Γ ⁏ Δ ⊢⋆ Ξ
eval : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊨ A
eval (var i) γ δ = lookup i γ
eval (app {A} {B} t u) γ δ = _⟪$⟫_ {A} {B} (eval t γ δ) (eval u γ δ)
eval ci γ δ = K I
eval (ck {A} {B}) γ δ = K (⟪K⟫ {A} {B})
eval (cs {A} {B} {C}) γ δ = K (⟪S⟫′ {A} {B} {C})
eval (mvar i) γ δ = mlookup i δ
eval (box t) γ δ = λ ψ → let δ′ = mono²⊩⋆ ψ δ
in mmulticut (reify⋆ δ′) (box t) ⅋
eval t ∙ δ′
eval cdist γ δ = K _⟪D⟫′_
eval cup γ δ = K ⟪↑⟫
eval cdown γ δ = K ⟪↓⟫
eval (cpair {A} {B}) γ δ = K (_⟪,⟫′_ {A} {B})
eval cfst γ δ = K π₁
eval csnd γ δ = K π₂
eval unit γ δ = ∙
private
instance
canon : Model
canon = record
{ _⊩ᵅ_ = λ Π P → Π ⊢ α P
; mono²⊩ᵅ = mono²⊢
}
mutual
reflectᶜ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊩ A
reflectᶜ {α P} t = t
reflectᶜ {A ▻ B} t = λ ψ → let t′ = mono²⊢ ψ t
in λ a → reflectᶜ (app t′ (reifyᶜ a))
reflectᶜ {□ A} t = λ ψ → let t′ = mono²⊢ ψ t
in t′ ⅋ reflectᶜ (down t′)
reflectᶜ {A ∧ B} t = reflectᶜ (fst t) , reflectᶜ (snd t)
reflectᶜ {⊤} t = ∙
reifyᶜ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊩ A → Γ ⁏ Δ ⊢ A
reifyᶜ {α P} s = s
reifyᶜ {A ▻ B} s = lam (reifyᶜ (s weak⊆²₁ (reflectᶜ {A} v₀)))
reifyᶜ {□ A} s = syn (s refl⊆²)
reifyᶜ {A ∧ B} s = pair (reifyᶜ (π₁ s)) (reifyᶜ (π₂ s))
reifyᶜ {⊤} s = unit
reflectᶜ⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ ⊩⋆ Ξ
reflectᶜ⋆ {∅} ∙ = ∙
reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t
reifyᶜ⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊩⋆ Ξ → Γ ⁏ Δ ⊢⋆ Ξ
reifyᶜ⋆ {∅} ∙ = ∙
reifyᶜ⋆ {Ξ , A} (ts , t) = reifyᶜ⋆ ts , reifyᶜ t
refl⊩⋆ : ∀ {Γ Δ} → Γ ⁏ Δ ⊩⋆ Γ
refl⊩⋆ = reflectᶜ⋆ refl⊢⋆
mrefl⊩⋆ : ∀ {Γ Δ} → Γ ⁏ Δ ⊩⋆ □⋆ Δ
mrefl⊩⋆ = reflectᶜ⋆ mrefl⊢⋆
trans⊩⋆ : ∀ {Γ Γ′ Δ Δ′ Ξ} → Γ ⁏ Δ ⊩⋆ Γ′ ⧺ (□⋆ Δ′) → Γ′ ⁏ Δ′ ⊩⋆ Ξ → Γ ⁏ Δ ⊩⋆ Ξ
trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reifyᶜ⋆ ts) (reifyᶜ⋆ us))
quot : ∀ {A Γ Δ} → Γ ⁏ Δ ⊨ A → Γ ⁏ Δ ⊢ A
quot s = reifyᶜ (s refl⊩⋆ mrefl⊩⋆)
norm : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ A
norm = quot ∘ eval