-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇.
-- Tarski-style semantics with context pairs as concrete worlds, and glueing for □ only.
-- Implicit syntax.

module A201607.BasicIS4.Semantics.TarskiGluedDyadicImplicit where

open import A201607.BasicIS4.Syntax.Common public
open import A201607.Common.Semantics public


-- Intuitionistic Tarski models.

record Model : Set₁ where
  infix 3 _⊩ᵅ_
  field
    -- Forcing for atomic propositions; monotonic.
    _⊩ᵅ_    : Cx² Ty Ty  Atom  Set
    mono²⊩ᵅ :  {P Π Π′}  Π ⊆² Π′  Π ⊩ᵅ P  Π′ ⊩ᵅ P

open Model {{…}} public




module ImplicitSyntax
    (_[⊢]_ : Cx² Ty Ty  Ty  Set)
  where


  -- Forcing in a particular model.

  module _ {{_ : Model}} where
    infix 3 _⊩_
    _⊩_ : Cx² Ty Ty  Ty  Set
    Π  α P   = Π ⊩ᵅ P
    Π  A  B =  {Π′}  Π ⊆² Π′  Π′  A  Π′  B
    Π   A   =  {Π′}  Π ⊆² Π′  Glue (Π′ [⊢] ( A)) (Π′  A)
    Π  A  B = Π  A × Π  B
    Π      = 𝟙

    infix 3 _⊩⋆_
    _⊩⋆_ : Cx² Ty Ty  Cx Ty  Set
    Π ⊩⋆      = 𝟙
    Π ⊩⋆ Ξ , A = Π ⊩⋆ Ξ × Π  A


  -- Monotonicity with respect to context inclusion.

  module _ {{_ : Model}} where
    mono²⊩ :  {A Π Π′}  Π ⊆² Π′  Π  A  Π′  A
    mono²⊩ {α P}   ψ s = mono²⊩ᵅ ψ s
    mono²⊩ {A  B} ψ s = λ ψ′  s (trans⊆² ψ ψ′)
    mono²⊩ { A}   ψ s = λ ψ′  s (trans⊆² ψ ψ′)
    mono²⊩ {A  B} ψ s = mono²⊩ {A} ψ (π₁ s) , mono²⊩ {B} ψ (π₂ s)
    mono²⊩ {}    ψ s = 

    mono²⊩⋆ :  {Ξ Π Π′}  Π ⊆² Π′  Π ⊩⋆ Ξ  Π′ ⊩⋆ Ξ
    mono²⊩⋆ {}     ψ         = 
    mono²⊩⋆ {Ξ , A} ψ (ts , t) = mono²⊩⋆ {Ξ} ψ ts , mono²⊩ {A} ψ t


  -- Additional useful equipment.

  module _ {{_ : Model}} where
    _⟪$⟫_ :  {A B Π}  Π  A  B  Π  A  Π  B
    s ⟪$⟫ a = s refl⊆² a

    ⟪K⟫ :  {A B Π}  Π  A  Π  B  A
    ⟪K⟫ {A} a ψ = K (mono²⊩ {A} ψ a)

    ⟪S⟫ :  {A B C Π}  Π  A  B  C  Π  A  B  Π  A  Π  C
    ⟪S⟫ {A} {B} {C} s₁ s₂ a = _⟪$⟫_ {B} {C} (_⟪$⟫_ {A} {B  C} s₁ a) (_⟪$⟫_ {A} {B} s₂ a)

    ⟪S⟫′ :  {A B C Π}  Π  A  B  C  Π  (A  B)  A  C
    ⟪S⟫′ {A} {B} {C} s₁ ψ s₂ ψ′ a = let s₁′ = mono²⊩ {A  B  C} (trans⊆² ψ ψ′) s₁
                                        s₂′ = mono²⊩ {A  B} ψ′ s₂
                                    in  ⟪S⟫ {A} {B} {C} s₁′ s₂′ a

    ⟪↓⟫ :  {A Π}  Π   A  Π  A
    ⟪↓⟫ s = sem (s refl⊆²)

    _⟪,⟫′_ :  {A B Π}  Π  A  Π  B  A  B
    _⟪,⟫′_ {A} {B} a ψ = _,_ (mono²⊩ {A} ψ a)


  -- Forcing in a particular world of a particular model, for sequents.

  module _ {{_ : Model}} where
    infix 3 _⊩_⇒_
    _⊩_⇒_ : Cx² Ty Ty  Cx² Ty Ty  Ty  Set
    Π  Γ  Δ  A = Π ⊩⋆ Γ  Π ⊩⋆ □⋆ Δ  Π  A

    infix 3 _⊩_⇒⋆_
    _⊩_⇒⋆_ : Cx² Ty Ty  Cx² Ty Ty  Cx Ty  Set
    Π  Γ  Δ ⇒⋆ Ξ = Π ⊩⋆ Γ  Π ⊩⋆ □⋆ Δ  Π ⊩⋆ Ξ


  -- Entailment, or forcing in all worlds of all models, for sequents.

  infix 3 _⊨_
  _⊨_ : Cx² Ty Ty  Ty  Set₁
  Π  A =  {{_ : Model}} {w : Cx² Ty Ty}  w  Π  A

  infix 3 _⊨⋆_
  _⊨⋆_ : Cx² Ty Ty  Cx Ty  Set₁
  Π ⊨⋆ Ξ =  {{_ : Model}} {w : Cx² Ty Ty}  w  Π ⇒⋆ Ξ


  -- Additional useful equipment, for sequents.

  module _ {{_ : Model}} where
    lookup :  {A Γ w}  A  Γ  w ⊩⋆ Γ  w  A
    lookup top     (γ , a) = a
    lookup (pop i) (γ , b) = lookup i γ

    mlookup :  {A Δ w}  A  Δ  w ⊩⋆ □⋆ Δ  w  A
    mlookup top     (γ , s) = sem (s refl⊆²)
    mlookup (pop i) (γ , s) = mlookup i γ

    -- TODO: More equipment.