module A201607.BasicIS4.Metatheory.DyadicGentzen-TarskiOvergluedDyadicGentzen where
open import A201607.BasicIS4.Syntax.DyadicGentzen public
open import A201607.BasicIS4.Semantics.TarskiOvergluedDyadicGentzen public
module _ {{_ : Model}} where
[_] : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ [⊢] A
[ var i ] = [var] i
[ lam t ] = [lam] [ t ]
[ app t u ] = [app] [ t ] [ u ]
[ mvar i ] = [mvar] i
[ box t ] = [box] [ t ]
[ unbox t u ] = [unbox] [ t ] [ u ]
[ pair t u ] = [pair] [ t ] [ u ]
[ fst t ] = [fst] [ t ]
[ snd t ] = [snd] [ t ]
[ unit ] = [unit]
eval : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊨ A
eval (var i) γ δ = lookup i γ
eval (lam t) γ δ = λ ψ → let γ′ = mono²⊩⋆ ψ γ in
let δ′ = mono²⊩⋆ ψ δ
in [multicut²] (reifyʳ⋆ γ′) (reifyʳ⋆ δ′) [ lam t ] ⅋ λ a →
eval t (γ′ , a) δ′
eval (app t u) γ δ = eval t γ δ ⟪$⟫ eval u γ δ
eval (mvar i) γ δ = mlookup i δ
eval (box t) γ δ = λ ψ → let γ′ = mono²⊩⋆ ψ γ in
let δ′ = mono²⊩⋆ ψ δ
in [multicut²] (reifyʳ⋆ γ′) (reifyʳ⋆ δ′) [ box t ] ⅋
eval t ∙ δ′
eval (unbox t u) γ δ = eval u γ (δ , eval t γ δ)
eval (pair t u) γ δ = eval t γ δ , eval u γ δ
eval (fst t) γ δ = π₁ (eval t γ δ)
eval (snd t) γ δ = π₂ (eval t γ δ)
eval unit γ δ = ∙
private
instance
canon : Model
canon = record
{ _⊩ᵅ_ = λ Π P → Π ⊢ α P
; mono²⊩ᵅ = mono²⊢
; _[⊢]_ = _⊢_
; mono²[⊢] = mono²⊢
; [var] = var
; [lam] = lam
; [app] = app
; [mvar] = mvar
; [box] = box
; [unbox] = unbox
; [pair] = pair
; [fst] = fst
; [snd] = snd
; [unit] = unit
}
mutual
reflectᶜ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊩ A
reflectᶜ {α P} t = t ⅋ t
reflectᶜ {A ▻ B} t = λ ψ → let t′ = mono²⊢ ψ t
in t′ ⅋ λ a → reflectᶜ (app t′ (reifyᶜ a))
reflectᶜ {□ A} t = λ ψ → let t′ = mono²⊢ ψ t
in t′ ⅋ reflectᶜ (down t′)
reflectᶜ {A ∧ B} t = reflectᶜ (fst t) , reflectᶜ (snd t)
reflectᶜ {⊤} t = ∙
reifyᶜ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊩ A → Γ ⁏ Δ ⊢ A
reifyᶜ {α P} s = syn s
reifyᶜ {A ▻ B} s = syn (s refl⊆²)
reifyᶜ {□ A} s = syn (s refl⊆²)
reifyᶜ {A ∧ B} s = pair (reifyᶜ (π₁ s)) (reifyᶜ (π₂ s))
reifyᶜ {⊤} s = unit
reflectᶜ⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ ⊩⋆ Ξ
reflectᶜ⋆ {∅} ∙ = ∙
reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t
reifyᶜ⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊩⋆ Ξ → Γ ⁏ Δ ⊢⋆ Ξ
reifyᶜ⋆ {∅} ∙ = ∙
reifyᶜ⋆ {Ξ , A} (ts , t) = reifyᶜ⋆ ts , reifyᶜ t
refl⊩⋆ : ∀ {Γ Δ} → Γ ⁏ Δ ⊩⋆ Γ
refl⊩⋆ = reflectᶜ⋆ refl⊢⋆
mrefl⊩⋆ : ∀ {Γ Δ} → Γ ⁏ Δ ⊩⋆ □⋆ Δ
mrefl⊩⋆ = reflectᶜ⋆ mrefl⊢⋆
trans⊩⋆ : ∀ {Γ Γ′ Δ Δ′ Ξ} → Γ ⁏ Δ ⊩⋆ Γ′ ⧺ (□⋆ Δ′) → Γ′ ⁏ Δ′ ⊩⋆ Ξ → Γ ⁏ Δ ⊩⋆ Ξ
trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reifyᶜ⋆ ts) (reifyᶜ⋆ us))
quot : ∀ {A Γ Δ} → Γ ⁏ Δ ⊨ A → Γ ⁏ Δ ⊢ A
quot s = reifyᶜ (s refl⊩⋆ mrefl⊩⋆)
norm : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ A
norm = quot ∘ eval