module A201607.BasicIS4.Syntax.DyadicGentzen where
open import A201607.BasicIS4.Syntax.Common public
infix 3 _⊢_
data _⊢_ : Cx² Ty Ty → Ty → Set where
var : ∀ {A Γ Δ} → A ∈ Γ → Γ ⁏ Δ ⊢ A
lam : ∀ {A B Γ Δ} → Γ , A ⁏ Δ ⊢ B → Γ ⁏ Δ ⊢ A ▻ B
app : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ B
mvar : ∀ {A Γ Δ} → A ∈ Δ → Γ ⁏ Δ ⊢ A
box : ∀ {A Γ Δ} → ∅ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ □ A
unbox : ∀ {A C Γ Δ} → Γ ⁏ Δ ⊢ □ A → Γ ⁏ Δ , A ⊢ C → Γ ⁏ Δ ⊢ C
pair : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ B → Γ ⁏ Δ ⊢ A ∧ B
fst : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ∧ B → Γ ⁏ Δ ⊢ A
snd : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ∧ B → Γ ⁏ Δ ⊢ B
unit : ∀ {Γ Δ} → Γ ⁏ Δ ⊢ ⊤
infix 3 _⊢⋆_
_⊢⋆_ : Cx² Ty Ty → Cx Ty → Set
Γ ⁏ Δ ⊢⋆ ∅ = 𝟙
Γ ⁏ Δ ⊢⋆ Ξ , A = Γ ⁏ Δ ⊢⋆ Ξ × Γ ⁏ Δ ⊢ A
invvar : ∀ {A Γ Δ} {i i′ : A ∈ Γ} → var {Δ = Δ} i ≡ var i′ → i ≡ i′
invvar refl = refl
invlam : ∀ {A B Γ Δ} {t t′ : Γ , A ⁏ Δ ⊢ B} → lam t ≡ lam t′ → t ≡ t′
invlam refl = refl
invappᵀ : ∀ {A A′ B Γ Δ} {t : Γ ⁏ Δ ⊢ A ▻ B} {t′ : Γ ⁏ Δ ⊢ A′ ▻ B} {u : Γ ⁏ Δ ⊢ A} {u′ : Γ ⁏ Δ ⊢ A′} → app t u ≡ app t′ u′ → A ≡ A′
invappᵀ refl = refl
invapp₁ : ∀ {A B Γ Δ} {t t′ : Γ ⁏ Δ ⊢ A ▻ B} {u u′ : Γ ⁏ Δ ⊢ A} → app t u ≡ app t′ u′ → t ≡ t′
invapp₁ refl = refl
invapp₂ : ∀ {A B Γ Δ} {t t′ : Γ ⁏ Δ ⊢ A ▻ B} {u u′ : Γ ⁏ Δ ⊢ A} → app t u ≡ app t′ u′ → u ≡ u′
invapp₂ refl = refl
invmvar : ∀ {A Γ Δ} {i i′ : A ∈ Δ} → mvar {Γ = Γ} i ≡ mvar i′ → i ≡ i′
invmvar refl = refl
invbox : ∀ {A Γ Δ} {t t′ : ∅ ⁏ Δ ⊢ A} → box {Γ = Γ} t ≡ box t′ → t ≡ t′
invbox refl = refl
invunboxᵀ : ∀ {A A′ C Γ Δ} {t : Γ ⁏ Δ ⊢ □ A} {t′ : Γ ⁏ Δ ⊢ □ A′} {u : Γ ⁏ Δ , A ⊢ C} {u′ : Γ ⁏ Δ , A′ ⊢ C} → unbox t u ≡ unbox t′ u′ → A ≡ A′
invunboxᵀ refl = refl
invunbox₁ : ∀ {A C Γ Δ} {t t′ : Γ ⁏ Δ ⊢ □ A} {u u′ : Γ ⁏ Δ , A ⊢ C} → unbox t u ≡ unbox t′ u′ → t ≡ t′
invunbox₁ refl = refl
invunbox₂ : ∀ {A C Γ Δ} {t t′ : Γ ⁏ Δ ⊢ □ A} {u u′ : Γ ⁏ Δ , A ⊢ C} → unbox t u ≡ unbox t′ u′ → u ≡ u′
invunbox₂ refl = refl
invpair₁ : ∀ {A B Γ Δ} {t t′ : Γ ⁏ Δ ⊢ A} {u u′ : Γ ⁏ Δ ⊢ B} → pair t u ≡ pair t′ u′ → t ≡ t′
invpair₁ refl = refl
invpair₂ : ∀ {A B Γ Δ} {t t′ : Γ ⁏ Δ ⊢ A} {u u′ : Γ ⁏ Δ ⊢ B} → pair t u ≡ pair t′ u′ → u ≡ u′
invpair₂ refl = refl
invfstᵀ : ∀ {A B B′ Γ Δ} {t : Γ ⁏ Δ ⊢ A ∧ B} {t′ : Γ ⁏ Δ ⊢ A ∧ B′} → fst t ≡ fst t′ → B ≡ B′
invfstᵀ refl = refl
invfst : ∀ {A B Γ Δ} {t t′ : Γ ⁏ Δ ⊢ A ∧ B} → fst t ≡ fst t′ → t ≡ t′
invfst refl = refl
invsndᵀ : ∀ {A A′ B Γ Δ} {t : Γ ⁏ Δ ⊢ A ∧ B} {t′ : Γ ⁏ Δ ⊢ A′ ∧ B} → snd t ≡ snd t′ → A ≡ A′
invsndᵀ refl = refl
invsnd : ∀ {A B Γ Δ} {t t′ : Γ ⁏ Δ ⊢ A ∧ B} → snd t ≡ snd t′ → t ≡ t′
invsnd refl = refl
_≟_ : ∀ {A Γ Δ} → (t t′ : Γ ⁏ Δ ⊢ A) → Dec (t ≡ t′)
var i ≟ var i′ with i ≟ⁱ i′
var i ≟ var .i | yes refl = yes refl
var i ≟ var i′ | no i≢i′ = no (i≢i′ ∘ invvar)
var i ≟ lam t′ = no λ ()
var i ≟ app t′ u′ = no λ ()
var i ≟ mvar i′ = no λ ()
var i ≟ box t′ = no λ ()
var i ≟ unbox t′ u′ = no λ ()
var i ≟ pair t′ u′ = no λ ()
var i ≟ fst t′ = no λ ()
var i ≟ snd t′ = no λ ()
var i ≟ unit = no λ ()
lam t ≟ var i′ = no λ ()
lam t ≟ lam t′ with t ≟ t′
lam t ≟ lam .t | yes refl = yes refl
lam t ≟ lam t′ | no t≢t′ = no (t≢t′ ∘ invlam)
lam t ≟ app t′ u′ = no λ ()
lam t ≟ mvar i′ = no λ ()
lam t ≟ unbox t′ u′ = no λ ()
lam t ≟ fst t′ = no λ ()
lam t ≟ snd t′ = no λ ()
app t u ≟ var i′ = no λ ()
app t u ≟ lam t′ = no λ ()
app {A = A} t u ≟ app {A = A′} t′ u′ with A ≟ᵀ A′
app t u ≟ app t′ u′ | yes refl with t ≟ t′ | u ≟ u′
app t u ≟ app .t .u | yes refl | yes refl | yes refl = yes refl
app t u ≟ app t′ u′ | yes refl | no t≢t′ | _ = no (t≢t′ ∘ invapp₁)
app t u ≟ app t′ u′ | yes refl | _ | no u≢u′ = no (u≢u′ ∘ invapp₂)
app t u ≟ app t′ u′ | no A≢A′ = no (A≢A′ ∘ invappᵀ)
app t u ≟ mvar i′ = no λ ()
app t u ≟ box t′ = no λ ()
app t u ≟ unbox t′ u′ = no λ ()
app t u ≟ pair t′ u′ = no λ ()
app t u ≟ fst t′ = no λ ()
app t u ≟ snd t′ = no λ ()
app t u ≟ unit = no λ ()
mvar i ≟ var i′ = no λ ()
mvar i ≟ lam t′ = no λ ()
mvar i ≟ app t′ u′ = no λ ()
mvar i ≟ mvar i′ with i ≟ⁱ i′
mvar i ≟ mvar .i | yes refl = yes refl
mvar i ≟ mvar i′ | no i≢i′ = no (i≢i′ ∘ invmvar)
mvar i ≟ box t′ = no λ ()
mvar i ≟ unbox t′ u′ = no λ ()
mvar i ≟ pair t′ u′ = no λ ()
mvar i ≟ fst t′ = no λ ()
mvar i ≟ snd t′ = no λ ()
mvar i ≟ unit = no λ ()
box t ≟ var i′ = no λ ()
box t ≟ app t′ u′ = no λ ()
box t ≟ mvar i′ = no λ ()
box t ≟ box t′ with t ≟ t′
box t ≟ box .t | yes refl = yes refl
box t ≟ box t′ | no t≢t′ = no (t≢t′ ∘ invbox)
box t ≟ unbox t′ u′ = no λ ()
box t ≟ fst t′ = no λ ()
box t ≟ snd t′ = no λ ()
unbox t u ≟ var i′ = no λ ()
unbox t u ≟ lam t′ = no λ ()
unbox t u ≟ app t′ u′ = no λ ()
unbox t u ≟ mvar i′ = no λ ()
unbox t u ≟ box t′ = no λ ()
unbox {A = A} t u ≟ unbox {A = A′} t′ u′ with A ≟ᵀ A′
unbox t u ≟ unbox t′ u′ | yes refl with t ≟ t′ | u ≟ u′
unbox t u ≟ unbox .t .u | yes refl | yes refl | yes refl = yes refl
unbox t u ≟ unbox t′ u′ | yes refl | no t≢t′ | _ = no (t≢t′ ∘ invunbox₁)
unbox t u ≟ unbox t′ u′ | yes refl | _ | no u≢u′ = no (u≢u′ ∘ invunbox₂)
unbox t u ≟ unbox t′ u′ | no A≢A′ = no (A≢A′ ∘ invunboxᵀ)
unbox t u ≟ pair t′ u′ = no λ ()
unbox t u ≟ fst t′ = no λ ()
unbox t u ≟ snd t′ = no λ ()
unbox t u ≟ unit = no λ ()
pair t u ≟ var i′ = no λ ()
pair t u ≟ app t′ u′ = no λ ()
pair t u ≟ mvar i′ = no λ ()
pair t u ≟ unbox t′ u′ = no λ ()
pair t u ≟ pair t′ u′ with t ≟ t′ | u ≟ u′
pair t u ≟ pair .t .u | yes refl | yes refl = yes refl
pair t u ≟ pair t′ u′ | no t≢t′ | _ = no (t≢t′ ∘ invpair₁)
pair t u ≟ pair t′ u′ | _ | no u≢u′ = no (u≢u′ ∘ invpair₂)
pair t u ≟ fst t′ = no λ ()
pair t u ≟ snd t′ = no λ ()
fst t ≟ var i′ = no λ ()
fst t ≟ lam t′ = no λ ()
fst t ≟ app t′ u′ = no λ ()
fst t ≟ mvar i′ = no λ ()
fst t ≟ box t′ = no λ ()
fst t ≟ unbox t′ u′ = no λ ()
fst t ≟ pair t′ u′ = no λ ()
fst {B = B} t ≟ fst {B = B′} t′ with B ≟ᵀ B′
fst t ≟ fst t′ | yes refl with t ≟ t′
fst t ≟ fst .t | yes refl | yes refl = yes refl
fst t ≟ fst t′ | yes refl | no t≢t′ = no (t≢t′ ∘ invfst)
fst t ≟ fst t′ | no B≢B′ = no (B≢B′ ∘ invfstᵀ)
fst t ≟ snd t′ = no λ ()
fst t ≟ unit = no λ ()
snd t ≟ var i′ = no λ ()
snd t ≟ lam t′ = no λ ()
snd t ≟ app t′ u′ = no λ ()
snd t ≟ mvar i′ = no λ ()
snd t ≟ box t′ = no λ ()
snd t ≟ unbox t′ u′ = no λ ()
snd t ≟ pair t′ u′ = no λ ()
snd t ≟ fst t′ = no λ ()
snd {A = A} t ≟ snd {A = A′} t′ with A ≟ᵀ A′
snd t ≟ snd t′ | yes refl with t ≟ t′
snd t ≟ snd .t | yes refl | yes refl = yes refl
snd t ≟ snd t′ | yes refl | no t≢t′ = no (t≢t′ ∘ invsnd)
snd t ≟ snd t′ | no A≢A′ = no (A≢A′ ∘ invsndᵀ)
snd t ≟ unit = no λ ()
unit ≟ var i′ = no λ ()
unit ≟ app t′ u′ = no λ ()
unit ≟ mvar i′ = no λ ()
unit ≟ unbox t′ u′ = no λ ()
unit ≟ fst t′ = no λ ()
unit ≟ snd t′ = no λ ()
unit ≟ unit = yes refl
private
data _≤_ : ∀ {A′ A Γ′ Γ Δ′ Δ} → Γ′ ⁏ Δ′ ⊢ A′ → Γ ⁏ Δ ⊢ A → Set where
refl≤ : ∀ {A Γ Δ} → {t : Γ ⁏ Δ ⊢ A}
→ t ≤ t
steplam≤ : ∀ {A B Γ Δ} → {t′ t : Γ , A ⁏ Δ ⊢ B}
→ t′ ≡ t → t′ ≤ lam t
stepapp≤₁ : ∀ {A B Γ Δ} → {t′ t : Γ ⁏ Δ ⊢ A ▻ B} → {u : Γ ⁏ Δ ⊢ A}
→ t′ ≡ t → t′ ≤ app t u
stepapp≤₂ : ∀ {A B Γ Δ} → {t : Γ ⁏ Δ ⊢ A ▻ B} → {u′ u : Γ ⁏ Δ ⊢ A}
→ u′ ≡ u → u′ ≤ app t u
stepbox≤ : ∀ {A Γ Δ} → {t′ t : ∅ ⁏ Δ ⊢ A}
→ t′ ≡ t → t′ ≤ box {Γ = Γ} t
stepunbox≤₁ : ∀ {A C Γ Δ} → {t′ t : Γ ⁏ Δ ⊢ □ A} → {u : Γ ⁏ Δ , A ⊢ C}
→ t′ ≡ t → t′ ≤ unbox t u
stepunbox≤₂ : ∀ {A C Γ Δ} → {t : Γ ⁏ Δ ⊢ □ A} → {u′ u : Γ ⁏ Δ , A ⊢ C}
→ u′ ≡ u → u′ ≤ unbox t u
steppair≤₁ : ∀ {A B Γ Δ} → {t′ t : Γ ⁏ Δ ⊢ A} → {u : Γ ⁏ Δ ⊢ B}
→ t′ ≡ t → t′ ≤ pair t u
steppair≤₂ : ∀ {A B Γ Δ} → {t : Γ ⁏ Δ ⊢ A} → {u′ u : Γ ⁏ Δ ⊢ B}
→ u′ ≡ u → u′ ≤ pair t u
stepfst≤ : ∀ {A B Γ Δ} → {t′ t : Γ ⁏ Δ ⊢ A ∧ B}
→ t′ ≡ t → t′ ≤ fst t
stepsnd≤ : ∀ {A B Γ Δ} → {t′ t : Γ ⁏ Δ ⊢ A ∧ B}
→ t′ ≡ t → t′ ≤ snd t
_<_ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ A → Set
t < t′ = t ≢ t′ × t ≤ t′
mono⊢ : ∀ {A Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢ A → Γ′ ⁏ Δ ⊢ A
mono⊢ η (var i) = var (mono∈ η i)
mono⊢ η (lam t) = lam (mono⊢ (keep η) t)
mono⊢ η (app t u) = app (mono⊢ η t) (mono⊢ η u)
mono⊢ η (mvar i) = mvar i
mono⊢ η (box t) = box t
mono⊢ η (unbox t u) = unbox (mono⊢ η t) (mono⊢ η u)
mono⊢ η (pair t u) = pair (mono⊢ η t) (mono⊢ η u)
mono⊢ η (fst t) = fst (mono⊢ η t)
mono⊢ η (snd t) = snd (mono⊢ η t)
mono⊢ η unit = unit
mono⊢⋆ : ∀ {Ξ Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢⋆ Ξ → Γ′ ⁏ Δ ⊢⋆ Ξ
mono⊢⋆ {∅} η ∙ = ∙
mono⊢⋆ {Ξ , A} η (ts , t) = mono⊢⋆ η ts , mono⊢ η t
mmono⊢ : ∀ {A Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ′ ⊢ A
mmono⊢ θ (var i) = var i
mmono⊢ θ (lam t) = lam (mmono⊢ θ t)
mmono⊢ θ (app t u) = app (mmono⊢ θ t) (mmono⊢ θ u)
mmono⊢ θ (mvar i) = mvar (mono∈ θ i)
mmono⊢ θ (box t) = box (mmono⊢ θ t)
mmono⊢ θ (unbox t u) = unbox (mmono⊢ θ t) (mmono⊢ (keep θ) u)
mmono⊢ θ (pair t u) = pair (mmono⊢ θ t) (mmono⊢ θ u)
mmono⊢ θ (fst t) = fst (mmono⊢ θ t)
mmono⊢ θ (snd t) = snd (mmono⊢ θ t)
mmono⊢ θ unit = unit
mmono⊢⋆ : ∀ {Ξ Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ′ ⊢⋆ Ξ
mmono⊢⋆ {∅} θ ∙ = ∙
mmono⊢⋆ {Ξ , A} θ (ts , t) = mmono⊢⋆ θ ts , mmono⊢ θ t
mono²⊢ : ∀ {A Π Π′} → Π ⊆² Π′ → Π ⊢ A → Π′ ⊢ A
mono²⊢ (η , θ) = mono⊢ η ∘ mmono⊢ θ
mono²⊢⋆ : ∀ {Ξ Π Π′} → Π ⊆² Π′ → Π ⊢⋆ Ξ → Π′ ⊢⋆ Ξ
mono²⊢⋆ (η , θ) = mono⊢⋆ η ∘ mmono⊢⋆ θ
v₀ : ∀ {A Γ Δ} → Γ , A ⁏ Δ ⊢ A
v₀ = var i₀
v₁ : ∀ {A B Γ Δ} → Γ , A , B ⁏ Δ ⊢ A
v₁ = var i₁
v₂ : ∀ {A B C Γ Δ} → Γ , A , B , C ⁏ Δ ⊢ A
v₂ = var i₂
mv₀ : ∀ {A Γ Δ} → Γ ⁏ Δ , A ⊢ A
mv₀ = mvar i₀
mv₁ : ∀ {A B Γ Δ} → Γ ⁏ Δ , A , B ⊢ A
mv₁ = mvar i₁
mv₂ : ∀ {A B C Γ Δ} → Γ ⁏ Δ , A , B , C ⊢ A
mv₂ = mvar i₂
refl⊢⋆ : ∀ {Γ Δ} → Γ ⁏ Δ ⊢⋆ Γ
refl⊢⋆ {∅} = ∙
refl⊢⋆ {Γ , A} = mono⊢⋆ weak⊆ refl⊢⋆ , v₀
mrefl⊢⋆ : ∀ {Δ Γ} → Γ ⁏ Δ ⊢⋆ □⋆ Δ
mrefl⊢⋆ {∅} = ∙
mrefl⊢⋆ {Δ , A} = mmono⊢⋆ weak⊆ mrefl⊢⋆ , box mv₀
mrefl⊢⋆′ : ∀ {Δ Δ′ Γ Γ′} → (∀ {A} → Γ ⁏ Δ ⊢ □ A → Γ′ ⁏ Δ′ ⊢ A) → Γ′ ⁏ Δ′ ⊢⋆ Δ
mrefl⊢⋆′ {∅} f = ∙
mrefl⊢⋆′ {Δ , B} f = mrefl⊢⋆′ (f ∘ mmono⊢ weak⊆) , f (box mv₀)
lam⋆ : ∀ {Ξ A Γ Δ} → Γ ⧺ Ξ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ Ξ ▻⋯▻ A
lam⋆ {∅} = I
lam⋆ {Ξ , B} = lam⋆ {Ξ} ∘ lam
lam⋆₀ : ∀ {Γ A Δ} → Γ ⁏ Δ ⊢ A → ∅ ⁏ Δ ⊢ Γ ▻⋯▻ A
lam⋆₀ {∅} = I
lam⋆₀ {Γ , B} = lam⋆₀ ∘ lam
mlam : ∀ {A B Γ Δ} → Γ ⁏ Δ , A ⊢ B → Γ ⁏ Δ ⊢ □ A ▻ B
mlam t = lam (unbox v₀ (mono⊢ weak⊆ t))
mlam⋆ : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⧺ Ξ ⊢ A → Γ ⁏ Δ ⊢ □⋆ Ξ ▻⋯▻ A
mlam⋆ {∅} = I
mlam⋆ {Ξ , B} = mlam⋆ {Ξ} ∘ mlam
mlam⋆₀ : ∀ {Δ A Γ} → Γ ⁏ Δ ⊢ A → Γ ⁏ ∅ ⊢ □⋆ Δ ▻⋯▻ A
mlam⋆₀ {∅} = I
mlam⋆₀ {Δ , B} = mlam⋆₀ ∘ mlam
det : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B → Γ , A ⁏ Δ ⊢ B
det t = app (mono⊢ weak⊆ t) v₀
det⋆ : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊢ Ξ ▻⋯▻ A → Γ ⧺ Ξ ⁏ Δ ⊢ A
det⋆ {∅} = I
det⋆ {Ξ , B} = det ∘ det⋆ {Ξ}
det⋆₀ : ∀ {Γ A Δ} → ∅ ⁏ Δ ⊢ Γ ▻⋯▻ A → Γ ⁏ Δ ⊢ A
det⋆₀ {∅} = I
det⋆₀ {Γ , B} = det ∘ det⋆₀
mdet : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ A ▻ B → Γ ⁏ Δ , A ⊢ B
mdet t = app (mmono⊢ weak⊆ t) (box mv₀)
mdet⋆ : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊢ □⋆ Ξ ▻⋯▻ A → Γ ⁏ Δ ⧺ Ξ ⊢ A
mdet⋆ {∅} = I
mdet⋆ {Ξ , B} = mdet ∘ mdet⋆ {Ξ}
mdet⋆₀ : ∀ {Δ A Γ} → Γ ⁏ ∅ ⊢ □⋆ Δ ▻⋯▻ A → Γ ⁏ Δ ⊢ A
mdet⋆₀ {∅} = I
mdet⋆₀ {Δ , B} = mdet ∘ mdet⋆₀
merge : ∀ {Δ A Γ} → Γ ⁏ Δ ⊢ A → Γ ⧺ (□⋆ Δ) ⁏ ∅ ⊢ A
merge {Δ} = det⋆ {□⋆ Δ} ∘ mlam⋆₀
mmerge : ∀ {Γ A Δ} → □⋆ Γ ⁏ Δ ⊢ A → ∅ ⁏ Δ ⧺ Γ ⊢ A
mmerge {Γ} = mdet⋆ {Γ} ∘ lam⋆₀
split : ∀ {Δ A Γ} → Γ ⧺ (□⋆ Δ) ⁏ ∅ ⊢ A → Γ ⁏ Δ ⊢ A
split {Δ} = mdet⋆₀ ∘ lam⋆ {□⋆ Δ}
msplit : ∀ {Γ A Δ} → ∅ ⁏ Δ ⧺ Γ ⊢ A → □⋆ Γ ⁏ Δ ⊢ A
msplit {Γ} = det⋆₀ ∘ mlam⋆ {Γ}
merge⋆ : ∀ {Ξ Δ Γ} → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⧺ (□⋆ Δ) ⁏ ∅ ⊢⋆ Ξ
merge⋆ {∅} ∙ = ∙
merge⋆ {Ξ , A} (ts , t) = merge⋆ ts , merge t
split⋆ : ∀ {Ξ Δ Γ} → Γ ⧺ (□⋆ Δ) ⁏ ∅ ⊢⋆ Ξ → Γ ⁏ Δ ⊢⋆ Ξ
split⋆ {∅} ∙ = ∙
split⋆ {Ξ , A} (ts , t) = split⋆ ts , split t
cut : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A → Γ , A ⁏ Δ ⊢ B → Γ ⁏ Δ ⊢ B
cut t u = app (lam u) t
mcut : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ A → Γ ⁏ Δ , A ⊢ B → Γ ⁏ Δ ⊢ B
mcut t u = app (mlam u) t
multicut : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊢⋆ Ξ → Ξ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ A
multicut {∅} ∙ u = mono⊢ bot⊆ u
multicut {Ξ , B} (ts , t) u = app (multicut ts (lam u)) t
mmulticut : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊢⋆ □⋆ Ξ → Γ ⁏ Ξ ⊢ A → Γ ⁏ Δ ⊢ A
mmulticut {∅} ∙ u = mmono⊢ bot⊆ u
mmulticut {Ξ , B} (ts , t) u = app (mmulticut ts (mlam u)) t
multicut² : ∀ {Ξ Ξ′ A Γ Δ} → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ ⊢⋆ □⋆ Ξ′ → Ξ ⁏ Ξ′ ⊢ A → Γ ⁏ Δ ⊢ A
multicut² {∅} ∙ us v = mmulticut us (mono⊢ bot⊆ v)
multicut² {Ξ , B} (ts , t) us v = app (multicut² ts us (lam v)) t
trans⊢⋆₀ : ∀ {Γ″ Γ′ Γ} → Γ ⁏ ∅ ⊢⋆ Γ′ → Γ′ ⁏ ∅ ⊢⋆ Γ″ → Γ ⁏ ∅ ⊢⋆ Γ″
trans⊢⋆₀ {∅} ts ∙ = ∙
trans⊢⋆₀ {Γ″ , A} ts (us , u) = trans⊢⋆₀ ts us , multicut ts u
trans⊢⋆ : ∀ {Ξ Γ Γ′ Δ Δ′} → Γ ⁏ Δ ⊢⋆ Γ′ ⧺ (□⋆ Δ′) → Γ′ ⁏ Δ′ ⊢⋆ Ξ → Γ ⁏ Δ ⊢⋆ Ξ
trans⊢⋆ ts us = split⋆ (trans⊢⋆₀ (merge⋆ ts) (merge⋆ us))
ccont : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ (A ▻ A ▻ B) ▻ A ▻ B
ccont = lam (lam (app (app v₁ v₀) v₀))
cont : ∀ {A B Γ Δ} → Γ , A , A ⁏ Δ ⊢ B → Γ , A ⁏ Δ ⊢ B
cont t = det (app ccont (lam (lam t)))
mcont : ∀ {A B Γ Δ} → Γ ⁏ Δ , A , A ⊢ B → Γ ⁏ Δ , A ⊢ B
mcont t = mdet (app ccont (mlam (mlam t)))
cexch : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ (A ▻ B ▻ C) ▻ B ▻ A ▻ C
cexch = lam (lam (lam (app (app v₂ v₀) v₁)))
exch : ∀ {A B C Γ Δ} → Γ , A , B ⁏ Δ ⊢ C → Γ , B , A ⁏ Δ ⊢ C
exch t = det (det (app cexch (lam (lam t))))
mexch : ∀ {A B C Γ Δ} → Γ ⁏ Δ , A , B ⊢ C → Γ ⁏ Δ , B , A ⊢ C
mexch t = mdet (mdet (app cexch (mlam (mlam t))))
ccomp : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ (B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
ccomp = lam (lam (lam (app v₂ (app v₁ v₀))))
comp : ∀ {A B C Γ Δ} → Γ , B ⁏ Δ ⊢ C → Γ , A ⁏ Δ ⊢ B → Γ , A ⁏ Δ ⊢ C
comp t u = det (app (app ccomp (lam t)) (lam u))
mcomp : ∀ {A B C Γ Δ} → Γ ⁏ Δ , B ⊢ □ C → Γ ⁏ Δ , A ⊢ □ B → Γ ⁏ Δ , A ⊢ □ C
mcomp t u = mdet (app (app ccomp (mlam t)) (mlam u))
dist : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ (A ▻ B) → Γ ⁏ Δ ⊢ □ A → Γ ⁏ Δ ⊢ □ B
dist t u = unbox t (unbox (mmono⊢ weak⊆ u) (box (app mv₁ mv₀)))
up : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ □ A → Γ ⁏ Δ ⊢ □ □ A
up t = unbox t (box (box mv₀))
down : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ □ A → Γ ⁏ Δ ⊢ A
down t = unbox t mv₀
distup : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ (□ A ▻ B) → Γ ⁏ Δ ⊢ □ A → Γ ⁏ Δ ⊢ □ B
distup t u = dist t (up u)
ci : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A ▻ A
ci = lam v₀
ck : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B ▻ A
ck = lam (lam v₁)
cs : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
cs = lam (lam (lam (app (app v₂ v₀) (app v₁ v₀))))
cdist : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ (A ▻ B) ▻ □ A ▻ □ B
cdist = lam (lam (dist v₁ v₀))
cup : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ □ A ▻ □ □ A
cup = lam (up v₀)
cdown : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ □ A ▻ A
cdown = lam (down v₀)
cdistup : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ (□ A ▻ B) ▻ □ A ▻ □ B
cdistup = lam (lam (dist v₁ (up v₀)))
cunbox : ∀ {A C Γ Δ} → Γ ⁏ Δ ⊢ □ A ▻ (□ A ▻ C) ▻ C
cunbox = lam (lam (app v₀ v₁))
cpair : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B ▻ A ∧ B
cpair = lam (lam (pair v₁ v₀))
cfst : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ∧ B ▻ A
cfst = lam (fst v₀)
csnd : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ∧ B ▻ B
csnd = lam (snd v₀)
lift : ∀ {Γ A Δ} → Γ ⁏ Δ ⊢ A → □⋆ Γ ⁏ Δ ⊢ □ A
lift {∅} t = box t
lift {Γ , B} t = det (app cdist (lift (lam t)))
hypup : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B → Γ ⁏ Δ ⊢ □ A ▻ B
hypup t = lam (app (mono⊢ weak⊆ t) (down v₀))
hypdown : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ □ A ▻ B → Γ ⁏ Δ ⊢ □ A ▻ B
hypdown t = lam (app (mono⊢ weak⊆ t) (up v₀))
cxup : ∀ {Γ A Δ} → Γ ⁏ Δ ⊢ A → □⋆ Γ ⁏ Δ ⊢ A
cxup {∅} t = t
cxup {Γ , B} t = det (hypup (cxup (lam t)))
cxdown : ∀ {Γ A Δ} → □⋆ □⋆ Γ ⁏ Δ ⊢ A → □⋆ Γ ⁏ Δ ⊢ A
cxdown {∅} t = t
cxdown {Γ , B} t = det (hypdown (cxdown (lam t)))
box⋆ : ∀ {Ξ Γ Δ} → ∅ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ ⊢⋆ □⋆ Ξ
box⋆ {∅} ∙ = ∙
box⋆ {Ξ , A} (ts , t) = box⋆ ts , box t
lift⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊢⋆ Ξ → □⋆ Γ ⁏ Δ ⊢⋆ □⋆ Ξ
lift⋆ {∅} ∙ = ∙
lift⋆ {Ξ , A} (ts , t) = lift⋆ ts , lift t
up⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊢⋆ □⋆ Ξ → Γ ⁏ Δ ⊢⋆ □⋆ □⋆ Ξ
up⋆ {∅} ∙ = ∙
up⋆ {Ξ , A} (ts , t) = up⋆ ts , up t
down⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊢⋆ □⋆ Ξ → Γ ⁏ Δ ⊢⋆ Ξ
down⋆ {∅} ∙ = ∙
down⋆ {Ξ , A} (ts , t) = down⋆ ts , down t
multibox : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊢⋆ □⋆ Ξ → □⋆ Ξ ⁏ ∅ ⊢ A → Γ ⁏ Δ ⊢ □ A
multibox ts u = multicut (up⋆ ts) (mmono⊢ bot⊆ (lift u))
dist′ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ (A ▻ B) → Γ ⁏ Δ ⊢ □ A ▻ □ B
dist′ t = lam (dist (mono⊢ weak⊆ t) v₀)
mpair : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ A → Γ ⁏ Δ ⊢ □ B → Γ ⁏ Δ ⊢ □ (A ∧ B)
mpair t u = unbox t (unbox (mmono⊢ weak⊆ u) (box (pair mv₁ mv₀)))
mfst : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ (A ∧ B) → Γ ⁏ Δ ⊢ □ A
mfst t = unbox t (box (fst mv₀))
msnd : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ (A ∧ B) → Γ ⁏ Δ ⊢ □ B
msnd t = unbox t (box (snd mv₀))
concat : ∀ {A B Γ} Γ′ {Δ} → Γ , A ⁏ Δ ⊢ B → Γ′ ⁏ Δ ⊢ A → Γ ⧺ Γ′ ⁏ Δ ⊢ B
concat Γ′ t u = app (mono⊢ (weak⊆⧺₁ Γ′) (lam t)) (mono⊢ weak⊆⧺₂ u)
mconcat : ∀ {A B Γ Δ} Δ′ → Γ ⁏ Δ , A ⊢ B → Γ ⁏ Δ′ ⊢ □ A → Γ ⁏ Δ ⧺ Δ′ ⊢ B
mconcat Δ′ t u = app (mmono⊢ (weak⊆⧺₁ Δ′) (mlam t)) (mmono⊢ weak⊆⧺₂ u)
[_≔_]_ : ∀ {A B Γ Δ} → (i : A ∈ Γ) → Γ ∖ i ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ B → Γ ∖ i ⁏ Δ ⊢ B
[ i ≔ s ] var j with i ≟∈ j
[ i ≔ s ] var .i | same = s
[ i ≔ s ] var ._ | diff j = var j
[ i ≔ s ] lam t = lam ([ pop i ≔ mono⊢ weak⊆ s ] t)
[ i ≔ s ] app t u = app ([ i ≔ s ] t) ([ i ≔ s ] u)
[ i ≔ s ] mvar j = mvar j
[ i ≔ s ] box t = box t
[ i ≔ s ] unbox t u = unbox ([ i ≔ s ] t) ([ i ≔ mmono⊢ weak⊆ s ] u)
[ i ≔ s ] pair t u = pair ([ i ≔ s ] t) ([ i ≔ s ] u)
[ i ≔ s ] fst t = fst ([ i ≔ s ] t)
[ i ≔ s ] snd t = snd ([ i ≔ s ] t)
[ i ≔ s ] unit = unit
[_≔_]⋆_ : ∀ {Ξ A Γ Δ} → (i : A ∈ Γ) → Γ ∖ i ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢⋆ Ξ → Γ ∖ i ⁏ Δ ⊢⋆ Ξ
[_≔_]⋆_ {∅} i s ∙ = ∙
[_≔_]⋆_ {Ξ , B} i s (ts , t) = [ i ≔ s ]⋆ ts , [ i ≔ s ] t
m[_≔_]_ : ∀ {A B Γ Δ} → (i : A ∈ Δ) → ∅ ⁏ Δ ∖ i ⊢ A → Γ ⁏ Δ ⊢ B → Γ ⁏ Δ ∖ i ⊢ B
m[ i ≔ s ] var j = var j
m[ i ≔ s ] lam t = lam (m[ i ≔ s ] t)
m[ i ≔ s ] app t u = app (m[ i ≔ s ] t) (m[ i ≔ s ] u)
m[ i ≔ s ] mvar j with i ≟∈ j
m[ i ≔ s ] mvar .i | same = mono⊢ bot⊆ s
m[ i ≔ s ] mvar ._ | diff j = mvar j
m[ i ≔ s ] box t = box (m[ i ≔ s ] t)
m[ i ≔ s ] unbox t u = unbox (m[ i ≔ s ] t) (m[ pop i ≔ mmono⊢ weak⊆ s ] u)
m[ i ≔ s ] pair t u = pair (m[ i ≔ s ] t) (m[ i ≔ s ] u)
m[ i ≔ s ] fst t = fst (m[ i ≔ s ] t)
m[ i ≔ s ] snd t = snd (m[ i ≔ s ] t)
m[ i ≔ s ] unit = unit
m[_≔_]⋆_ : ∀ {Ξ A Γ Δ} → (i : A ∈ Δ) → ∅ ⁏ Δ ∖ i ⊢ A → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ ∖ i ⊢⋆ Ξ
m[_≔_]⋆_ {∅} i s ∙ = ∙
m[_≔_]⋆_ {Ξ , B} i s (ts , t) = m[ i ≔ s ]⋆ ts , m[ i ≔ s ] t
data _⋙_ {Γ Δ : Cx Ty} : ∀ {A} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ A → Set where
refl⋙ : ∀ {A} → {t : Γ ⁏ Δ ⊢ A}
→ t ⋙ t
trans⋙ : ∀ {A} → {t t′ t″ : Γ ⁏ Δ ⊢ A}
→ t ⋙ t′ → t′ ⋙ t″
→ t ⋙ t″
sym⋙ : ∀ {A} → {t t′ : Γ ⁏ Δ ⊢ A}
→ t ⋙ t′
→ t′ ⋙ t
conglam⋙ : ∀ {A B} → {t t′ : Γ , A ⁏ Δ ⊢ B}
→ t ⋙ t′
→ lam t ⋙ lam t′
congapp⋙ : ∀ {A B} → {t t′ : Γ ⁏ Δ ⊢ A ▻ B} → {u u′ : Γ ⁏ Δ ⊢ A}
→ t ⋙ t′ → u ⋙ u′
→ app t u ⋙ app t′ u′
congunbox⋙ : ∀ {A C} → {t t′ : Γ ⁏ Δ ⊢ □ A} → {u u′ : Γ ⁏ Δ , A ⊢ C}
→ t ⋙ t′ → u ⋙ u′
→ unbox t u ⋙ unbox t′ u′
congpair⋙ : ∀ {A B} → {t t′ : Γ ⁏ Δ ⊢ A} → {u u′ : Γ ⁏ Δ ⊢ B}
→ t ⋙ t′ → u ⋙ u′
→ pair t u ⋙ pair t′ u′
congfst⋙ : ∀ {A B} → {t t′ : Γ ⁏ Δ ⊢ A ∧ B}
→ t ⋙ t′
→ fst t ⋙ fst t′
congsnd⋙ : ∀ {A B} → {t t′ : Γ ⁏ Δ ⊢ A ∧ B}
→ t ⋙ t′
→ snd t ⋙ snd t′
beta▻⋙ : ∀ {A B} → {t : Γ , A ⁏ Δ ⊢ B} → {u : Γ ⁏ Δ ⊢ A}
→ app (lam t) u ⋙ ([ top ≔ u ] t)
eta▻⋙ : ∀ {A B} → {t : Γ ⁏ Δ ⊢ A ▻ B}
→ t ⋙ lam (app (mono⊢ weak⊆ t) v₀)
beta□⋙ : ∀ {A C} → {t : ∅ ⁏ Δ ⊢ A} → {u : Γ ⁏ Δ , A ⊢ C}
→ unbox (box t) u ⋙ (m[ top ≔ t ] u)
eta□⋙ : ∀ {A} → {t : Γ ⁏ Δ ⊢ □ A}
→ t ⋙ unbox t (box mv₀)
beta∧₁⋙ : ∀ {A B} → {t : Γ ⁏ Δ ⊢ A} → {u : Γ ⁏ Δ ⊢ B}
→ fst (pair t u) ⋙ t
beta∧₂⋙ : ∀ {A B} → {t : Γ ⁏ Δ ⊢ A} → {u : Γ ⁏ Δ ⊢ B}
→ snd (pair t u) ⋙ u
eta∧⋙ : ∀ {A B} → {t : Γ ⁏ Δ ⊢ A ∧ B}
→ t ⋙ pair (fst t) (snd t)
eta⊤⋙ : ∀ {t : Γ ⁏ Δ ⊢ ⊤} → t ⋙ unit