module A201607.BasicIPC.Metatheory.Hilbert-TarskiConcreteGluedImplicit where
open import A201607.BasicIPC.Syntax.Hilbert public
open import A201607.BasicIPC.Semantics.TarskiConcreteGluedImplicit public
open ImplicitSyntax (_⊢_) public
module _ {{_ : Model}} where
reify : ∀ {A w} → w ⊩ A → unwrap w ⊢ A
reify {α P} s = syn s
reify {A ▻ B} s = syn s
reify {A ∧ B} s = pair (reify (π₁ s)) (reify (π₂ s))
reify {⊤} s = unit
reify⋆ : ∀ {Ξ w} → w ⊩⋆ Ξ → unwrap w ⊢⋆ Ξ
reify⋆ {∅} ∙ = ∙
reify⋆ {Ξ , A} (ts , t) = reify⋆ ts , reify t
module _ {{_ : Model}} where
⟪K⟫ : ∀ {A B w} → w ⊩ A → w ⊩ B ▻ A
⟪K⟫ {A} a = app ck (reify a) ⅋ K a
⟪S⟫′ : ∀ {A B C w} → w ⊩ A ▻ B ▻ C → w ⊩ (A ▻ B) ▻ A ▻ C
⟪S⟫′ {A} {B} {C} s₁ = app cs (syn s₁) ⅋ λ s₂ →
app (app cs (syn s₁)) (syn s₂) ⅋ ⟪S⟫ s₁ s₂
_⟪,⟫′_ : ∀ {A B w} → w ⊩ A → w ⊩ B ▻ A ∧ B
_⟪,⟫′_ {A} a = app cpair (reify a) ⅋ _,_ a
eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A
eval (var i) γ = lookup i γ
eval (app t u) γ = eval t γ ⟪$⟫ eval u γ
eval ci γ = ci ⅋ I
eval ck γ = ck ⅋ ⟪K⟫
eval cs γ = cs ⅋ ⟪S⟫′
eval cpair γ = cpair ⅋ _⟪,⟫′_
eval cfst γ = cfst ⅋ π₁
eval csnd γ = csnd ⅋ π₂
eval unit γ = ∙
private
instance
canon : Model
canon = record
{ _⊩ᵅ_ = λ w P → unwrap w ⊢ α P
}
reflectᶜ : ∀ {A w} → unwrap w ⊢ A → w ⊩ A
reflectᶜ {α P} t = t ⅋ t
reflectᶜ {A ▻ B} t = t ⅋ λ a → reflectᶜ (app t (reify a))
reflectᶜ {A ∧ B} t = reflectᶜ (fst t) , reflectᶜ (snd t)
reflectᶜ {⊤} t = ∙
reflectᶜ⋆ : ∀ {Ξ w} → unwrap w ⊢⋆ Ξ → w ⊩⋆ Ξ
reflectᶜ⋆ {∅} ∙ = ∙
reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t
refl⊩⋆ : ∀ {w} → w ⊩⋆ unwrap w
refl⊩⋆ = reflectᶜ⋆ refl⊢⋆
trans⊩⋆ : ∀ {w w′ w″} → w ⊩⋆ unwrap w′ → w′ ⊩⋆ unwrap w″ → w ⊩⋆ unwrap w″
trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reify⋆ ts) (reify⋆ us))
quot : ∀ {A Γ} → Γ ⊨ A → Γ ⊢ A
quot s = reify (s refl⊩⋆)
norm : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ A
norm = quot ∘ eval