-- Basic intuitionistic propositional calculus, without ∨ or ⊥.
-- Tarski-style semantics with contexts as concrete worlds, and glueing for α and ▻.
-- Implicit syntax.

module A201607.BasicIPC.Semantics.TarskiConcreteGluedImplicit where

open import A201607.BasicIPC.Syntax.Common public
open import A201607.Common.Semantics public

open ConcreteWorlds (Ty) public


-- Tarski models.

record Model : Set₁ where
  infix 3 _⊩ᵅ_
  field
    -- Forcing for atomic propositions.
    _⊩ᵅ_ : World  Atom  Set

open Model {{…}} public




module ImplicitSyntax
    (_[⊢]_ : Cx Ty  Ty  Set)
  where


  -- Forcing in a particular world of a particular model.

  module _ {{_ : Model}} where
    infix 3 _⊩_
    _⊩_ : World  Ty  Set
    w  α P   = Glue (unwrap w [⊢] (α P)) (w ⊩ᵅ P)
    w  A  B = Glue (unwrap w [⊢] (A  B)) (w  A  w  B)
    w  A  B = w  A × w  B
    w      = 𝟙

    infix 3 _⊩⋆_
    _⊩⋆_ : World  Cx Ty  Set
    w ⊩⋆      = 𝟙
    w ⊩⋆ Ξ , A = w ⊩⋆ Ξ × w  A


  -- Additional useful equipment.

  module _ {{_ : Model}} where
    _⟪$⟫_ :  {A B w}  w  A  B  w  A  w  B
    s ⟪$⟫ a = sem s a

    ⟪S⟫ :  {A B C w}  w  A  B  C  w  A  B  w  A  w  C
    ⟪S⟫ s₁ s₂ a = (s₁ ⟪$⟫ a) ⟪$⟫ (s₂ ⟪$⟫ a)


  -- Forcing in a particular world of a particular model, for sequents.

  module _ {{_ : Model}} where
    infix 3 _⊩_⇒_
    _⊩_⇒_ : World  Cx Ty  Ty  Set
    w  Γ  A = w ⊩⋆ Γ  w  A

    infix 3 _⊩_⇒⋆_
    _⊩_⇒⋆_ : World  Cx Ty  Cx Ty  Set
    w  Γ ⇒⋆ Ξ = w ⊩⋆ Γ  w ⊩⋆ Ξ


  -- Entailment, or forcing in all worlds of all models, for sequents.

  infix 3 _⊨_
  _⊨_ : Cx Ty  Ty  Set₁
  Γ  A =  {{_ : Model}} {w : World}  w  Γ  A

  infix 3 _⊨⋆_
  _⊨⋆_ : Cx Ty  Cx Ty  Set₁
  Γ ⊨⋆ Ξ =  {{_ : Model}} {w : World}  w  Γ ⇒⋆ Ξ


  -- Additional useful equipment, for sequents.

  module _ {{_ : Model}} where
    lookup :  {A Γ w}  A  Γ  w  Γ  A
    lookup top     (γ , a) = a
    lookup (pop i) (γ , b) = lookup i γ

    _⟦$⟧_ :  {A B Γ w}  w  Γ  A  B  w  Γ  A  w  Γ  B
    (s₁ ⟦$⟧ s₂) γ = s₁ γ ⟪$⟫ s₂ γ

    ⟦S⟧ :  {A B C Γ w}  w  Γ  A  B  C  w  Γ  A  B  w  Γ  A  w  Γ  C
    ⟦S⟧ s₁ s₂ a γ = ⟪S⟫ (s₁ γ) (s₂ γ) (a γ)

    _⟦,⟧_ :  {A B Γ w}  w  Γ  A  w  Γ  B  w  Γ  A  B
    (a ⟦,⟧ b) γ = a γ , b γ

    ⟦π₁⟧ :  {A B Γ w}  w  Γ  A  B  w  Γ  A
    ⟦π₁⟧ s γ = π₁ (s γ)

    ⟦π₂⟧ :  {A B Γ w}  w  Γ  A  B  w  Γ  B
    ⟦π₂⟧ s γ = π₂ (s γ)