module A201607.BasicIPC.Metatheory.Gentzen-TarskiConcreteGluedImplicit where

open import A201607.BasicIPC.Syntax.Gentzen public
open import A201607.BasicIPC.Semantics.TarskiConcreteGluedImplicit public

open ImplicitSyntax (_⊢_) public


-- Completeness with respect to a particular model.

module _ {{_ : Model}} where
  reify :  {A w}  w  A  unwrap w  A
  reify {α P}   s = syn s
  reify {A  B} s = syn s
  reify {A  B} s = pair (reify (π₁ s)) (reify (π₂ s))
  reify {}    s = unit

  reify⋆ :  {Ξ w}  w ⊩⋆ Ξ  unwrap w ⊢⋆ Ξ
  reify⋆ {}             = 
  reify⋆ {Ξ , A} (ts , t) = reify⋆ ts , reify t


-- Soundness with respect to all models, or evaluation.

eval :  {A Γ}  Γ  A  Γ  A
eval (var i)    γ = lookup i γ
eval (lam t)    γ = multicut (reify⋆ γ) (lam t)  λ a 
                      eval t (γ , a)
eval (app t u)  γ = eval t γ ⟪$⟫ eval u γ
eval (pair t u) γ = eval t γ , eval u γ
eval (fst t)    γ = π₁ (eval t γ)
eval (snd t)    γ = π₂ (eval t γ)
eval unit       γ = 


-- TODO: Correctness of evaluation with respect to conversion.


-- The canonical model.

private
  instance
    canon : Model
    canon = record
      { _⊩ᵅ_ = λ w P  unwrap w  α P
      }


-- Soundness with respect to the canonical model.

reflectᶜ :  {A w}  unwrap w  A  w  A
reflectᶜ {α P}   t = t  t
reflectᶜ {A  B} t = t  λ a  reflectᶜ (app t (reify a))
reflectᶜ {A  B} t = reflectᶜ (fst t) , reflectᶜ (snd t)
reflectᶜ {}    t = 

reflectᶜ⋆ :  {Ξ w}  unwrap w ⊢⋆ Ξ  w ⊩⋆ Ξ
reflectᶜ⋆ {}             = 
reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t


-- Reflexivity and transitivity.

refl⊩⋆ :  {w}  w ⊩⋆ unwrap w
refl⊩⋆ = reflectᶜ⋆ refl⊢⋆

trans⊩⋆ :  {w w′ w″}  w ⊩⋆ unwrap w′  w′ ⊩⋆ unwrap w″  w ⊩⋆ unwrap w″
trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reify⋆ ts) (reify⋆ us))


-- Completeness with respect to all models, or quotation.

quot :  {A Γ}  Γ  A  Γ  A
quot s = reify (s refl⊩⋆)


-- Normalisation by evaluation.

norm :  {A Γ}  Γ  A  Γ  A
norm = quot  eval


-- TODO: Correctness of normalisation with respect to conversion.