------------------------------------------------------------------------
-- The Agda standard library
--
-- Convenient syntax for "equational reasoning" using a partial order
------------------------------------------------------------------------
-- Example uses:
--
-- u≤x : u ≤ x
-- u≤x = begin
-- u ≈⟨ u≈v ⟩
-- v ≡⟨ v≡w ⟩
-- w <⟨ w≤x ⟩
-- x ∎
--
-- u<x : u < x
-- u<x = begin-strict
-- u ≈⟨ u≈v ⟩
-- v ≡⟨ v≡w ⟩
-- w <⟨ w≤x ⟩
-- x ∎
--
-- u<e : u < e
-- u<e = begin-strict
-- u ≈⟨ u≈v ⟩
-- v ≡⟨ v≡w ⟩
-- w <⟨ w<x ⟩
-- x ≤⟨ x≤y ⟩
-- y <⟨ y<z ⟩
-- z ≡⟨ d≡z ⟨
-- d ≈⟨ e≈d ⟨
-- e ∎
--
-- u≈w : u ≈ w
-- u≈w = begin-equality
-- u ≈⟨ u≈v ⟩
-- v ≡⟨ v≡w ⟩
-- w ∎
{-# OPTIONS --cubical-compatible --safe #-}
open import Relation.Binary.Bundles using (Poset)
module Relation.Binary.Reasoning.PartialOrder
{p₁ p₂ p₃} (P : Poset p₁ p₂ p₃) where
open Poset P
open import Relation.Binary.Construct.NonStrictToStrict _≈_ _≤_
as Strict
using (_<_)
------------------------------------------------------------------------
-- Re-export contents of base module
open import Relation.Binary.Reasoning.Base.Triple
isPreorder
(Strict.<-asym antisym)
(Strict.<-trans isPartialOrder)
(Strict.<-resp-≈ isEquivalence ≤-resp-≈)
Strict.<⇒≤
(Strict.<-≤-trans Eq.sym trans antisym ≤-respʳ-≈)
(Strict.≤-<-trans trans antisym ≤-respˡ-≈)
public