module A202401.STLC-Negative-WNF where
open import A202401.STLC-Negative public
mutual
data NF {Γ} : ∀ {A} → Γ ⊢ A → Set where
⌜λ⌝- : ∀ {A B} {t : Γ , A ⊢ B} → NF (⌜λ⌝ t)
-⌜,⌝- : ∀ {A B} {t₁ : Γ ⊢ A} {t₂ : Γ ⊢ B} → NF (t₁ ⌜,⌝ t₂)
⌜unit⌝ : NF ⌜unit⌝
nnf : ∀ {A} {t : Γ ⊢ A} (p : NNF t) → NF t
data NNF {Γ} : ∀ {A} → Γ ⊢ A → Set where
var- : ∀ {A} {i : Γ ∋ A} → NNF (var i)
_⌜$⌝_ : ∀ {A B} {t₁ : Γ ⊢ A ⌜⊃⌝ B} {t₂ : Γ ⊢ A} (p₁ : NNF t₁) (p₂ : NF t₂) → NNF (t₁ ⌜$⌝ t₂)
⌜fst⌝ : ∀ {A B} {t : Γ ⊢ A ⌜∧⌝ B} (p : NNF t) → NNF (⌜fst⌝ t)
⌜snd⌝ : ∀ {A B} {t : Γ ⊢ A ⌜∧⌝ B} (p : NNF t) → NNF (⌜snd⌝ t)
data NNF§ {Γ} : ∀ {Δ} → Γ ⊢§ Δ → Set where
∙ : NNF§ ∙
_,_ : ∀ {Δ A} {τ : Γ ⊢§ Δ} {t : Γ ⊢ A} → NNF§ τ → NNF t → NNF§ (τ , t)
mutual
uniNF : ∀ {Γ A} {t : Γ ⊢ A} (p p′ : NF t) → p ≡ p′
uniNF ⌜λ⌝- ⌜λ⌝- = refl
uniNF -⌜,⌝- -⌜,⌝- = refl
uniNF ⌜unit⌝ ⌜unit⌝ = refl
uniNF (nnf p) (nnf p′) = nnf & uniNNF p p′
uniNNF : ∀ {Γ A} {d : Γ ⊢ A} (p p′ : NNF d) → p ≡ p′
uniNNF var- var- = refl
uniNNF (p₁ ⌜$⌝ p₂) (p₁′ ⌜$⌝ p₂′) = _⌜$⌝_ & uniNNF p₁ p₁′ ⊗ uniNF p₂ p₂′
uniNNF (⌜fst⌝ p) (⌜fst⌝ p′) = ⌜fst⌝ & uniNNF p p′
uniNNF (⌜snd⌝ p) (⌜snd⌝ p′) = ⌜snd⌝ & uniNNF p p′
mutual
renNF : ∀ {Γ Γ′ A} {t : Γ ⊢ A} (ϱ : Γ ⊑ Γ′) → NF t → NF (ren ϱ t)
renNF ϱ ⌜λ⌝- = ⌜λ⌝-
renNF ϱ -⌜,⌝- = -⌜,⌝-
renNF ϱ ⌜unit⌝ = ⌜unit⌝
renNF ϱ (nnf p) = nnf (renNNF ϱ p)
renNNF : ∀ {Γ Γ′ A} {t : Γ ⊢ A} (ϱ : Γ ⊑ Γ′) → NNF t → NNF (ren ϱ t)
renNNF ϱ var- = var-
renNNF ϱ (p₁ ⌜$⌝ p₂) = renNNF ϱ p₁ ⌜$⌝ renNF ϱ p₂
renNNF ϱ (⌜fst⌝ p) = ⌜fst⌝ (renNNF ϱ p)
renNNF ϱ (⌜snd⌝ p) = ⌜snd⌝ (renNNF ϱ p)
sub∋NNF : ∀ {Γ Ξ A} {σ : Ξ ⊢§ Γ} {i : Γ ∋ A} → NNF§ σ → NNF (sub∋ σ i)
sub∋NNF {i = zero} (ψ , p) = p
sub∋NNF {i = wk∋ i} (ψ , p) = sub∋NNF ψ
mutual
subNF : ∀ {Γ Ξ A} {σ : Ξ ⊢§ Γ} {t : Γ ⊢ A} → NNF§ σ → NF t → NF (sub σ t)
subNF ψ ⌜λ⌝- = ⌜λ⌝-
subNF ψ -⌜,⌝- = -⌜,⌝-
subNF ψ ⌜unit⌝ = ⌜unit⌝
subNF ψ (nnf p) = nnf (subNNF ψ p)
subNNF : ∀ {Γ Ξ A} {σ : Ξ ⊢§ Γ} {t : Γ ⊢ A} → NNF§ σ → NNF t → NNF (sub σ t)
subNNF ψ var- = sub∋NNF ψ
subNNF ψ (p₁ ⌜$⌝ p₂) = subNNF ψ p₁ ⌜$⌝ subNF ψ p₂
subNNF ψ (⌜fst⌝ p) = ⌜fst⌝ (subNNF ψ p)
subNNF ψ (⌜snd⌝ p) = ⌜snd⌝ (subNNF ψ p)