module A202401.STLC-Base-EWNF where
open import A202401.STLC-Base public
mutual
data NF {Γ} : ∀ {A} → Γ ⊢ A → Set where
⌜λ⌝- : ∀ {A B} {t : Γ , A ⊢ B} → NF (⌜λ⌝ t)
nnf : ∀ {t : Γ ⊢ ⌜◦⌝} (p : NNF t) → NF t
data NNF {Γ} : ∀ {A} → Γ ⊢ A → Set where
var- : ∀ {A} {i : Γ ∋ A} → NNF (var i)
_⌜$⌝_ : ∀ {A B} {t₁ : Γ ⊢ A ⌜⊃⌝ B} {t₂ : Γ ⊢ A} (p₁ : NNF t₁) (p₂ : NF t₂) →
NNF (t₁ ⌜$⌝ t₂)
data NNF§ {Γ} : ∀ {Δ} → Γ ⊢§ Δ → Set where
∙ : NNF§ ∙
_,_ : ∀ {Δ A} {τ : Γ ⊢§ Δ} {t : Γ ⊢ A} (ψ : NNF§ τ) (p : NNF t) → NNF§ (τ , t)
mutual
uniNF : ∀ {Γ A} {t : Γ ⊢ A} (p p′ : NF t) → p ≡ p′
uniNF ⌜λ⌝- ⌜λ⌝- = refl
uniNF (nnf p) (nnf p′) = nnf & uniNNF p p′
uniNNF : ∀ {Γ A} {t : Γ ⊢ A} (p p′ : NNF t) → p ≡ p′
uniNNF var- var- = refl
uniNNF (p₁ ⌜$⌝ p₂) (p₁′ ⌜$⌝ p₂′) = _⌜$⌝_ & uniNNF p₁ p₁′ ⊗ uniNF p₂ p₂′
mutual
NF? : ∀ {A Γ} (t : Γ ⊢ A) → Dec (NF t)
NF? {⌜◦⌝} (var i) = yes (nnf var-)
NF? {⌜◦⌝} (t₁ ⌜$⌝ t₂) with NNF? t₁ | NF? t₂
... | yes p₁ | yes p₂ = yes (nnf (p₁ ⌜$⌝ p₂))
... | yes p₁ | no ¬p₂ = no λ { (nnf (p₁ ⌜$⌝ p₂)) → p₂ ↯ ¬p₂ }
... | no ¬p₁ | _ = no λ { (nnf (p₁ ⌜$⌝ p₂)) → p₁ ↯ ¬p₁ }
NF? {A ⌜⊃⌝ B} (var i) = no λ ()
NF? {A ⌜⊃⌝ B} (⌜λ⌝ t) = yes ⌜λ⌝-
NF? {A ⌜⊃⌝ B} (t₁ ⌜$⌝ t₂) = no λ ()
NNF? : ∀ {Γ A} (t : Γ ⊢ A) → Dec (NNF t)
NNF? (var i) = yes var-
NNF? (⌜λ⌝ t) = no λ ()
NNF? (t₁ ⌜$⌝ t₂) with NNF? t₁ | NF? t₂
... | yes p₁ | yes p₂ = yes (p₁ ⌜$⌝ p₂)
... | yes p₁ | no ¬p₂ = no λ { (p₁ ⌜$⌝ p₂) → p₂ ↯ ¬p₂ }
... | no ¬p₁ | _ = no λ { (p₁ ⌜$⌝ p₂) → p₁ ↯ ¬p₁ }
mutual
renNF : ∀ {Γ Γ′ A} {t : Γ ⊢ A} (ϱ : Γ ⊑ Γ′) → NF t → NF (ren ϱ t)
renNF ϱ ⌜λ⌝- = ⌜λ⌝-
renNF ϱ (nnf p) = nnf (renNNF ϱ p)
renNNF : ∀ {Γ Γ′ A} {t : Γ ⊢ A} (ϱ : Γ ⊑ Γ′) → NNF t → NNF (ren ϱ t)
renNNF ϱ var- = var-
renNNF ϱ (p₁ ⌜$⌝ p₂) = renNNF ϱ p₁ ⌜$⌝ renNF ϱ p₂
mutual
nerNF : ∀ {Γ Γ′ A} {t : Γ ⊢ A} (ϱ : Γ ⊑ Γ′) → NF (ren ϱ t) → NF t
nerNF {t = var i} ϱ (nnf p) = nnf (nerNNF ϱ p)
nerNF {t = ⌜λ⌝ t} ϱ ⌜λ⌝- = ⌜λ⌝-
nerNF {t = t₁ ⌜$⌝ t₂} ϱ (nnf p) = nnf (nerNNF ϱ p)
nerNNF : ∀ {Γ Γ′ A} {t : Γ ⊢ A} (ϱ : Γ ⊑ Γ′) → NNF (ren ϱ t) → NNF t
nerNNF {t = var i} ϱ var- = var-
nerNNF {t = t₁ ⌜$⌝ t₂} ϱ (p₁ ⌜$⌝ p₂) = nerNNF ϱ p₁ ⌜$⌝ nerNF ϱ p₂
sub∋NNF : ∀ {Γ Ξ A} {σ : Ξ ⊢§ Γ} {i : Γ ∋ A} → NNF§ σ → NNF (sub∋ σ i)
sub∋NNF {i = zero} (ψ , p) = p
sub∋NNF {i = wk∋ i} (ψ , p) = sub∋NNF ψ
mutual
subNF : ∀ {Γ Ξ A} {σ : Ξ ⊢§ Γ} {t : Γ ⊢ A} → NNF§ σ → NF t → NF (sub σ t)
subNF ψ ⌜λ⌝- = ⌜λ⌝-
subNF ψ (nnf p) = nnf (subNNF ψ p)
subNNF : ∀ {Γ Ξ A} {σ : Ξ ⊢§ Γ} {t : Γ ⊢ A} → NNF§ σ → NNF t → NNF (sub σ t)
subNNF ψ var- = sub∋NNF ψ
subNNF ψ (p₁ ⌜$⌝ p₂) = subNNF ψ p₁ ⌜$⌝ subNF ψ p₂
bus∋NNF : ∀ {A Γ Ξ} {σ : Ξ ⊢§ Γ} {i : Γ ∋ A} → NNF§ σ → NF (sub∋ σ i) → NF (var i)
bus∋NNF {⌜◦⌝} {i = i} ψ p′ = nnf var-
bus∋NNF {A ⌜⊃⌝ B} {i = zero} (ψ , ()) ⌜λ⌝-
bus∋NNF {A ⌜⊃⌝ B} {i = wk∋ i} (ψ , p) p′ with bus∋NNF ψ p′
... | ()
mutual
busNF : ∀ {Γ Ξ A} {σ : Ξ ⊢§ Γ} {t : Γ ⊢ A} → NNF§ σ → NF (sub σ t) → NF t
busNF {t = var i} ψ p = bus∋NNF ψ p
busNF {t = ⌜λ⌝ t} ψ ⌜λ⌝- = ⌜λ⌝-
busNF {t = t₁ ⌜$⌝ t₂} ψ (nnf p) = nnf (busNNF ψ p)
busNNF : ∀ {Γ Ξ A} {σ : Ξ ⊢§ Γ} {t : Γ ⊢ A} → NNF§ σ → NNF (sub σ t) → NNF t
busNNF {t = var i} ψ p = var-
busNNF {t = t₁ ⌜$⌝ t₂} ψ (p₁ ⌜$⌝ p₂) = busNNF ψ p₁ ⌜$⌝ busNF ψ p₂