----------------------------------------------------------------------------------------------------

-- β-short weak normal forms

module A202401.FOR-STLC-Base-WNF where

open import A202401.FOR-STLC-Base public


----------------------------------------------------------------------------------------------------

mutual
  data NF {Γ} :  {A}  Γ  A  Set where
    ⌜λ⌝- :  {A B} {t : Γ , A  B}  NF (⌜λ⌝ t)
    nnf  :  {A} {t : Γ  A} (p : NNF t)  NF t

  data NNF {Γ} :  {A}  Γ  A  Set where
    var-  :  {A} {i : Γ  A}  NNF (var i)
    _⌜$⌝_ :  {A B} {t₁ : Γ  A ⌜⊃⌝ B} {t₂ : Γ  A} (p₁ : NNF t₁) (p₂ : NF t₂)  NNF (t₁ ⌜$⌝ t₂)

-- TODO: kit
data NNF§ {Γ} :  {Δ}  Γ ⊢§ Δ  Set where
     : NNF§ 
  _,_ :  {Δ A} {τ : Γ ⊢§ Δ} {t : Γ  A}  NNF§ τ  NNF t  NNF§ (τ , t)

mutual
  uniNF :  {Γ A} {t : Γ  A} (p p′ : NF t)  p  p′
  uniNF ⌜λ⌝-    ⌜λ⌝-     = refl
  uniNF (nnf p) (nnf p′) = nnf & uniNNF p p′

  uniNNF :  {Γ A} {t : Γ  A} (p p′ : NNF t)  p  p′
  uniNNF var-        var-          = refl
  uniNNF (p₁ ⌜$⌝ p₂) (p₁′ ⌜$⌝ p₂′) = _⌜$⌝_ & uniNNF p₁ p₁′  uniNF p₂ p₂′

mutual
  NF? :  {Γ A} (t : Γ  A)  Dec (NF t)
  NF? (var i)           = yes (nnf var-)
  NF? (⌜λ⌝ t)           = yes ⌜λ⌝-
  NF? (t₁ ⌜$⌝ t₂)       with NNF? t₁ | NF? t₂
  ... | yes p₁ | yes p₂   = yes (nnf (p₁ ⌜$⌝ p₂))
  ... | yes p₁ | no ¬p₂   = no λ { (nnf (p₁ ⌜$⌝ p₂))  p₂  ¬p₂ }
  ... | no ¬p₁ | _        = no λ { (nnf (p₁ ⌜$⌝ p₂))  p₁  ¬p₁ }

  NNF? :  {Γ A} (t : Γ  A)  Dec (NNF t)
  NNF? (var i)          = yes var-
  NNF? (⌜λ⌝ t)          = no λ ()
  NNF? (t₁ ⌜$⌝ t₂)      with NNF? t₁ | NF? t₂
  ... | yes p₁ | yes p₂   = yes (p₁ ⌜$⌝ p₂)
  ... | yes p₁ | no ¬p₂   = no λ { (p₁ ⌜$⌝ p₂)  p₂  ¬p₂ }
  ... | no ¬p₁ | _        = no λ { (p₁ ⌜$⌝ p₂)  p₁  ¬p₁ }


----------------------------------------------------------------------------------------------------

mutual
  renNF :  {Γ Γ′ A} {t : Γ  A} (ϱ : Γ  Γ′)  NF t  NF (ren ϱ t)
  renNF ϱ ⌜λ⌝-    = ⌜λ⌝-
  renNF ϱ (nnf p) = nnf (renNNF ϱ p)

  renNNF :  {Γ Γ′ A} {t : Γ  A} (ϱ : Γ  Γ′)  NNF t  NNF (ren ϱ t)
  renNNF ϱ var-        = var-
  renNNF ϱ (p₁ ⌜$⌝ p₂) = renNNF ϱ p₁ ⌜$⌝ renNF ϱ p₂

sub∋NNF :  {Γ Ξ A} {σ : Ξ ⊢§ Γ} {i : Γ  A}  NNF§ σ  NNF (sub∋ σ i)
sub∋NNF {i = zero}  (ψ , p) = p
sub∋NNF {i = wk∋ i} (ψ , p) = sub∋NNF ψ

mutual
  subNF :  {Γ Ξ A} {σ : Ξ ⊢§ Γ} {t : Γ  A}  NNF§ σ  NF t  NF (sub σ t)
  subNF ψ ⌜λ⌝-    = ⌜λ⌝-
  subNF ψ (nnf p) = nnf (subNNF ψ p)

  subNNF :  {Γ Ξ A} {σ : Ξ ⊢§ Γ} {t : Γ  A}  NNF§ σ  NNF t  NNF (sub σ t)
  subNNF ψ var-        = sub∋NNF ψ
  subNNF ψ (p₁ ⌜$⌝ p₂) = subNNF ψ p₁ ⌜$⌝ subNF ψ p₂


----------------------------------------------------------------------------------------------------