{-# OPTIONS --irrelevant-projections #-}
module A201801.SequentCalculusDraftSquasha where
open import A201801.Prelude
open import A201801.Category
open import A201801.List
open import A201801.ListLemmas
open import A201801.AllList
open import A201801.FullIPLPropositions
open import A201801.FullIPLDerivations hiding (cut)
record Squash {ℓ} (X : Set ℓ) : Set ℓ
where
constructor squash
field
.proof : X
open Squash public
[List] : Set → Set
[List] X = Squash (List X)
infixl 6 _[,]_
_[,]_ : ∀ {X} → [List] X → X → [List] X
Ξ [,] A = squash (proof Ξ , A)
infix 4 _[∋]_
data _[∋]_ {X} : [List] X → X → Set
where
zero : ∀ {A Ξ} → Ξ [,] A [∋] A
suc : ∀ {B A Ξ} → Ξ [∋] A
→ Ξ [,] B [∋] A
postulate
[∋]→∋ : ∀ {X A} → {Ξ : List X}
→ squash Ξ [∋] A
→ Ξ ∋ A
∋→[∋] : ∀ {X A} → {Ξ : List X}
→ Ξ ∋ A
→ squash Ξ [∋] A
∋→[∋] {Ξ = Ξ} zero = zero {Ξ = squash Ξ}
∋→[∋] (suc {B = B} i) = suc {B = B} (∋→[∋] i)
infix 4 _[⊇]_
_[⊇]_ : ∀ {X} → [List] X → [List] X → Set
Ξ′ [⊇] Ξ = ∀ {A} → Ξ [∋] A → Ξ′ [∋] A
keep[⊇] : ∀ {X A} → {Ξ Ξ′ : [List] X}
→ Ξ′ [⊇] Ξ
→ Ξ′ [,] A [⊇] Ξ [,] A
keep[⊇] {Ξ′ = Ξ′} η zero = zero {Ξ = Ξ′}
keep[⊇] η (suc {B = B} i) = suc {B = B} (η i)
ex[⊇] : ∀ {X A B} → {Ξ : [List] X}
→ Ξ [,] B [,] A [⊇] Ξ [,] A [,] B
ex[⊇] {B = B} {Ξ} zero = suc {B = B} (zero {Ξ = Ξ})
ex[⊇] {Ξ = Ξ} (suc zero) = zero {Ξ = Ξ}
ex[⊇] {B = B} (suc (suc i)) = suc {B = B} (suc {B = B} i)
ct[⊇] : ∀ {X A} → {Ξ : [List] X}
→ Ξ [,] A [⊇] Ξ [,] A [,] A
ct[⊇] {Ξ = Ξ} zero = zero {Ξ = Ξ}
ct[⊇] {Ξ = Ξ} (suc zero) = zero {Ξ = Ξ}
ct[⊇] {A = A} (suc (suc i)) = suc {B = A} i
genct[⊇] : ∀ {X A} → {Ξ : [List] X}
→ Ξ [∋] A
→ Ξ [⊇] Ξ [,] A
genct[⊇] {Ξ = Ξ} zero zero = zero {Ξ = Ξ}
genct[⊇] {Ξ = Ξ} (suc i) zero = genct[⊇] i (zero {Ξ = Ξ})
genct[⊇] i (suc j) = j
mutual
infix 3 _⊢_normal
data _⊢_normal : Squash (List Form) → Form → Set
where
lam : ∀ {A B Γ} → Γ [,] A ⊢ B normal
→ Γ ⊢ A ⊃ B normal
pair : ∀ {A B Γ} → Γ ⊢ A normal → Γ ⊢ B normal
→ Γ ⊢ A ∧ B normal
unit : ∀ {Γ} → Γ ⊢ 𝟏 normal
abort : ∀ {A Γ} → Γ ⊢ 𝟎 neutral
→ Γ ⊢ A normal
inl : ∀ {A B Γ} → Γ ⊢ A normal
→ Γ ⊢ A ∨ B normal
inr : ∀ {A B Γ} → Γ ⊢ B normal
→ Γ ⊢ A ∨ B normal
case : ∀ {A B C Γ} → Γ ⊢ A ∨ B neutral → Γ [,] A ⊢ C normal → Γ [,] B ⊢ C normal
→ Γ ⊢ C normal
ent : ∀ {A Γ} → Γ ⊢ A neutral
→ Γ ⊢ A normal
infix 3 _⊢_neutral
data _⊢_neutral : Squash (List Form) → Form → Set
where
var : ∀ {A Γ} → Γ [∋] A
→ Γ ⊢ A neutral
app : ∀ {A B Γ} → Γ ⊢ A ⊃ B neutral → Γ ⊢ A normal
→ Γ ⊢ B neutral
fst : ∀ {A B Γ} → Γ ⊢ A ∧ B neutral
→ Γ ⊢ A neutral
snd : ∀ {A B Γ} → Γ ⊢ A ∧ B neutral
→ Γ ⊢ B neutral
infix 3 _⊢_allneutral
_⊢_allneutral : Squash (List Form) → List Form → Set
Γ ⊢ Ξ allneutral = All (Γ ⊢_neutral) Ξ
infix 3 _⊢_allnormal
_⊢_allnormal : Squash (List Form) → List Form → Set
Γ ⊢ Ξ allnormal = All (Γ ⊢_normal) Ξ
mutual
renₙₘ : ∀ {Γ Γ′ A} → Γ′ [⊇] Γ → Γ ⊢ A normal
→ Γ′ ⊢ A normal
renₙₘ η (lam {A} 𝒟) = lam (renₙₘ (keep[⊇] {A = A} η) 𝒟)
renₙₘ η (pair 𝒟 ℰ) = pair (renₙₘ η 𝒟) (renₙₘ η ℰ)
renₙₘ η unit = unit
renₙₘ η (abort 𝒟) = abort (renₙₜ η 𝒟)
renₙₘ η (inl 𝒟) = inl (renₙₘ η 𝒟)
renₙₘ η (inr 𝒟) = inr (renₙₘ η 𝒟)
renₙₘ η (case {A} {B} 𝒟 ℰ ℱ) = case (renₙₜ η 𝒟) (renₙₘ (keep[⊇] {A = A} η) ℰ) (renₙₘ (keep[⊇] {A = B} η) ℱ)
renₙₘ η (ent 𝒟) = ent (renₙₜ η 𝒟)
renₙₜ : ∀ {Γ Γ′ A} → Γ′ [⊇] Γ → Γ ⊢ A neutral
→ Γ′ ⊢ A neutral
renₙₜ η (var i) = var (η i)
renₙₜ η (app 𝒟 ℰ) = app (renₙₜ η 𝒟) (renₙₘ η ℰ)
renₙₜ η (fst 𝒟) = fst (renₙₜ η 𝒟)
renₙₜ η (snd 𝒟) = snd (renₙₜ η 𝒟)
rensₙₜ : ∀ {Γ Γ′ Ξ} → Γ′ [⊇] Γ → Γ ⊢ Ξ allneutral
→ Γ′ ⊢ Ξ allneutral
rensₙₜ η ξ = maps (renₙₜ η) ξ
wkₙₜ : ∀ {B Γ A} → Γ ⊢ A neutral
→ Γ [,] B ⊢ A neutral
wkₙₜ {B} 𝒟 = renₙₜ (suc {B = B}) 𝒟
exₙₜ : ∀ {A B Γ C} → Γ [,] A [,] B ⊢ C neutral
→ Γ [,] B [,] A ⊢ C neutral
exₙₜ {A} {B} {Γ} 𝒟 = renₙₜ (ex[⊇] {A = A} {B} {Γ}) 𝒟
ctₙₜ : ∀ {A Γ C} → Γ [,] A [,] A ⊢ C neutral
→ Γ [,] A ⊢ C neutral
ctₙₜ {A} {Γ} 𝒟 = renₙₜ (ct[⊇] {A = A} {Γ}) 𝒟
wksₙₜ : ∀ {A Γ Ξ} → Γ ⊢ Ξ allneutral
→ Γ [,] A ⊢ Ξ allneutral
wksₙₜ {A} ξ = rensₙₜ (suc {B = A}) ξ
vzₙₜ : ∀ {Γ A} → Γ [,] A ⊢ A neutral
vzₙₜ {Γ} = var (zero {Ξ = Γ})
liftsₙₜ : ∀ {A Γ Ξ} → Γ ⊢ Ξ allneutral
→ Γ [,] A ⊢ Ξ , A allneutral
liftsₙₜ {A} {Γ} ξ = wksₙₜ {A} ξ , vzₙₜ {Γ}
idsₙₜ : ∀ {Γ} → squash Γ ⊢ Γ allneutral
idsₙₜ {∙} = ∙
idsₙₜ {Γ , A} = liftsₙₜ idsₙₜ
rensₙₘ : ∀ {Γ Γ′ Ξ} → Γ′ [⊇] Γ → Γ ⊢ Ξ allnormal
→ Γ′ ⊢ Ξ allnormal
rensₙₘ η ξ = maps (renₙₘ η) ξ
wkₙₘ : ∀ {B Γ A} → Γ ⊢ A normal
→ Γ [,] B ⊢ A normal
wkₙₘ {B} 𝒟 = renₙₘ (suc {B = B}) 𝒟
exₙₘ : ∀ {A B Γ C} → Γ [,] A [,] B ⊢ C normal
→ Γ [,] B [,] A ⊢ C normal
exₙₘ {A} {B} {Γ} 𝒟 = renₙₘ (ex[⊇] {A = A} {B} {Γ}) 𝒟
ctₙₘ : ∀ {A Γ C} → Γ [,] A [,] A ⊢ C normal
→ Γ [,] A ⊢ C normal
ctₙₘ {A} {Γ} 𝒟 = renₙₘ (ct[⊇] {A = A} {Γ}) 𝒟
wksₙₘ : ∀ {A Γ Ξ} → Γ ⊢ Ξ allnormal
→ Γ [,] A ⊢ Ξ allnormal
wksₙₘ {A} ξ = rensₙₘ (suc {B = A}) ξ
vzₙₘ : ∀ {Γ A} → Γ [,] A ⊢ A normal
vzₙₘ {Γ} = ent (vzₙₜ {Γ})
liftsₙₘ : ∀ {A Γ Ξ} → Γ ⊢ Ξ allnormal
→ Γ [,] A ⊢ Ξ , A allnormal
liftsₙₘ {A} {Γ} ξ = wksₙₘ {A} ξ , vzₙₘ {Γ}
idsₙₘ : ∀ {Γ} → squash Γ ⊢ Γ allnormal
idsₙₘ {∙} = ∙
idsₙₘ {Γ , A} = liftsₙₘ idsₙₘ
mutual
subₙₘ : ∀ {Γ Ξ A} → Γ ⊢ Ξ allneutral → squash Ξ ⊢ A normal
→ Γ ⊢ A normal
subₙₘ ξ (lam {A} 𝒟) = lam (subₙₘ (liftsₙₜ {A} ξ) 𝒟)
subₙₘ ξ (pair 𝒟 ℰ) = pair (subₙₘ ξ 𝒟) (subₙₘ ξ ℰ)
subₙₘ ξ unit = unit
subₙₘ ξ (abort 𝒟) = abort (subₙₜ ξ 𝒟)
subₙₘ ξ (inl 𝒟) = inl (subₙₘ ξ 𝒟)
subₙₘ ξ (inr 𝒟) = inr (subₙₘ ξ 𝒟)
subₙₘ ξ (case {A} {B} 𝒟 ℰ ℱ) = case (subₙₜ ξ 𝒟) (subₙₘ (liftsₙₜ {A} ξ) ℰ) (subₙₘ (liftsₙₜ {B} ξ) ℱ)
subₙₘ ξ (ent 𝒟) = ent (subₙₜ ξ 𝒟)
subₙₜ : ∀ {Γ Ξ A} → Γ ⊢ Ξ allneutral → squash Ξ ⊢ A neutral
→ Γ ⊢ A neutral
subₙₜ ξ (var i) = get ξ ([∋]→∋ i)
subₙₜ ξ (app 𝒟 ℰ) = app (subₙₜ ξ 𝒟) (subₙₘ ξ ℰ)
subₙₜ ξ (fst 𝒟) = fst (subₙₜ ξ 𝒟)
subₙₜ ξ (snd 𝒟) = snd (subₙₜ ξ 𝒟)
cutₙₘ : ∀ {Γ A B} → squash Γ ⊢ A neutral → squash Γ [,] A ⊢ B normal
→ squash Γ ⊢ B normal
cutₙₘ {Γ} 𝒟 ℰ = subₙₘ (_,_ {Ξ = Γ} idsₙₜ 𝒟) ℰ
mutual
thm31ₙₘ : ∀ {Γ A} → squash Γ ⊢ A normal
→ Γ ⊢ A true
thm31ₙₘ (lam 𝒟) = lam (thm31ₙₘ 𝒟)
thm31ₙₘ (pair 𝒟 ℰ) = pair (thm31ₙₘ 𝒟) (thm31ₙₘ ℰ)
thm31ₙₘ unit = unit
thm31ₙₘ (abort 𝒟) = abort (thm31ₙₜ 𝒟)
thm31ₙₘ (inl 𝒟) = inl (thm31ₙₘ 𝒟)
thm31ₙₘ (inr 𝒟) = inr (thm31ₙₘ 𝒟)
thm31ₙₘ (case 𝒟 ℰ ℱ) = case (thm31ₙₜ 𝒟) (thm31ₙₘ ℰ) (thm31ₙₘ ℱ)
thm31ₙₘ (ent 𝒟) = thm31ₙₜ 𝒟
thm31ₙₜ : ∀ {Γ A} → squash Γ ⊢ A neutral
→ Γ ⊢ A true
thm31ₙₜ (var i) = var ([∋]→∋ i)
thm31ₙₜ (app 𝒟 ℰ) = app (thm31ₙₜ 𝒟) (thm31ₙₘ ℰ)
thm31ₙₜ (fst 𝒟) = fst (thm31ₙₜ 𝒟)
thm31ₙₜ (snd 𝒟) = snd (thm31ₙₜ 𝒟)
mutual
infix 3 _⊢₊_normal
data _⊢₊_normal : [List] Form → Form → Set
where
lam : ∀ {A B Γ} → Γ [,] A ⊢₊ B normal
→ Γ ⊢₊ A ⊃ B normal
pair : ∀ {A B Γ} → Γ ⊢₊ A normal → Γ ⊢₊ B normal
→ Γ ⊢₊ A ∧ B normal
unit : ∀ {Γ} → Γ ⊢₊ 𝟏 normal
abort : ∀ {A Γ} → Γ ⊢₊ 𝟎 neutral
→ Γ ⊢₊ A normal
inl : ∀ {A B Γ} → Γ ⊢₊ A normal
→ Γ ⊢₊ A ∨ B normal
inr : ∀ {A B Γ} → Γ ⊢₊ B normal
→ Γ ⊢₊ A ∨ B normal
case : ∀ {A B C Γ} → Γ ⊢₊ A ∨ B neutral → Γ [,] A ⊢₊ C normal → Γ [,] B ⊢₊ C normal
→ Γ ⊢₊ C normal
ent : ∀ {A Γ} → Γ ⊢₊ A neutral
→ Γ ⊢₊ A normal
infix 3 _⊢₊_neutral
data _⊢₊_neutral : [List] Form → Form → Set
where
var : ∀ {A Γ} → Γ [∋] A
→ Γ ⊢₊ A neutral
app : ∀ {A B Γ} → Γ ⊢₊ A ⊃ B neutral → Γ ⊢₊ A normal
→ Γ ⊢₊ B neutral
fst : ∀ {A B Γ} → Γ ⊢₊ A ∧ B neutral
→ Γ ⊢₊ A neutral
snd : ∀ {A B Γ} → Γ ⊢₊ A ∧ B neutral
→ Γ ⊢₊ B neutral
enm : ∀ {A Γ} → Γ ⊢₊ A normal
→ Γ ⊢₊ A neutral
infix 3 _⊢₊_allneutral
_⊢₊_allneutral : [List] Form → List Form → Set
Γ ⊢₊ Ξ allneutral = All (Γ ⊢₊_neutral) Ξ
infix 3 _⊢₊_allnormal
_⊢₊_allnormal : [List] Form → List Form → Set
Γ ⊢₊ Ξ allnormal = All (Γ ⊢₊_normal) Ξ
mutual
renₙₘ₊ : ∀ {Γ Γ′ A} → Γ′ [⊇] Γ → Γ ⊢₊ A normal
→ Γ′ ⊢₊ A normal
renₙₘ₊ η (lam {A} 𝒟) = lam (renₙₘ₊ (keep[⊇] {A = A}η) 𝒟)
renₙₘ₊ η (pair 𝒟 ℰ) = pair (renₙₘ₊ η 𝒟) (renₙₘ₊ η ℰ)
renₙₘ₊ η unit = unit
renₙₘ₊ η (abort 𝒟) = abort (renₙₜ₊ η 𝒟)
renₙₘ₊ η (inl 𝒟) = inl (renₙₘ₊ η 𝒟)
renₙₘ₊ η (inr 𝒟) = inr (renₙₘ₊ η 𝒟)
renₙₘ₊ η (case {A} {B} 𝒟 ℰ ℱ) = case (renₙₜ₊ η 𝒟) (renₙₘ₊ (keep[⊇] {A = A} η) ℰ) (renₙₘ₊ (keep[⊇] {A = B} η) ℱ)
renₙₘ₊ η (ent 𝒟) = ent (renₙₜ₊ η 𝒟)
renₙₜ₊ : ∀ {Γ Γ′ A} → Γ′ [⊇] Γ → Γ ⊢₊ A neutral
→ Γ′ ⊢₊ A neutral
renₙₜ₊ η (var i) = var (η i)
renₙₜ₊ η (app 𝒟 ℰ) = app (renₙₜ₊ η 𝒟) (renₙₘ₊ η ℰ)
renₙₜ₊ η (fst 𝒟) = fst (renₙₜ₊ η 𝒟)
renₙₜ₊ η (snd 𝒟) = snd (renₙₜ₊ η 𝒟)
renₙₜ₊ η (enm 𝒟) = enm (renₙₘ₊ η 𝒟)
rensₙₜ₊ : ∀ {Γ Γ′ Ξ} → Γ′ [⊇] Γ → Γ ⊢₊ Ξ allneutral
→ Γ′ ⊢₊ Ξ allneutral
rensₙₜ₊ η ξ = maps (renₙₜ₊ η) ξ
wkₙₜ₊ : ∀ {B Γ A} → Γ ⊢₊ A neutral
→ Γ [,] B ⊢₊ A neutral
wkₙₜ₊ {B} 𝒟 = renₙₜ₊ (suc {B = B}) 𝒟
exₙₜ₊ : ∀ {A B Γ C} → Γ [,] A [,] B ⊢₊ C neutral
→ Γ [,] B [,] A ⊢₊ C neutral
exₙₜ₊ {A} {B} {Γ} 𝒟 = renₙₜ₊ (ex[⊇] {A = A} {B} {Γ}) 𝒟
ctₙₜ₊ : ∀ {A Γ C} → Γ [,] A [,] A ⊢₊ C neutral
→ Γ [,] A ⊢₊ C neutral
ctₙₜ₊ {A} {Γ} 𝒟 = renₙₜ₊ (ct[⊇] {A = A} {Γ}) 𝒟
wksₙₜ₊ : ∀ {A Γ Ξ} → Γ ⊢₊ Ξ allneutral
→ Γ [,] A ⊢₊ Ξ allneutral
wksₙₜ₊ {A} ξ = rensₙₜ₊ (suc {B = A}) ξ
vzₙₜ₊ : ∀ {Γ A} → Γ [,] A ⊢₊ A neutral
vzₙₜ₊ {Γ} = var (zero {Ξ = Γ})
liftsₙₜ₊ : ∀ {A Γ Ξ} → Γ ⊢₊ Ξ allneutral
→ Γ [,] A ⊢₊ Ξ , A allneutral
liftsₙₜ₊ {A} {Γ} ξ = wksₙₜ₊ {A} ξ , vzₙₜ₊ {Γ}
idsₙₜ₊ : ∀ {Γ} → squash Γ ⊢₊ Γ allneutral
idsₙₜ₊ {∙} = ∙
idsₙₜ₊ {Γ , A} = liftsₙₜ₊ idsₙₜ₊
rensₙₘ₊ : ∀ {Γ Γ′ Ξ} → Γ′ [⊇] Γ → Γ ⊢₊ Ξ allnormal
→ Γ′ ⊢₊ Ξ allnormal
rensₙₘ₊ η ξ = maps (renₙₘ₊ η) ξ
wkₙₘ₊ : ∀ {B Γ A} → Γ ⊢₊ A normal
→ Γ [,] B ⊢₊ A normal
wkₙₘ₊ {B} 𝒟 = renₙₘ₊ (suc {B = B}) 𝒟
exₙₘ₊ : ∀ {A B Γ C} → Γ [,] A [,] B ⊢₊ C normal
→ Γ [,] B [,] A ⊢₊ C normal
exₙₘ₊ {A} {B} {Γ} 𝒟 = renₙₘ₊ (ex[⊇] {A = A} {B} {Γ}) 𝒟
ctₙₘ₊ : ∀ {A Γ C} → Γ [,] A [,] A ⊢₊ C normal
→ Γ [,] A ⊢₊ C normal
ctₙₘ₊ {A} {Γ} 𝒟 = renₙₘ₊ (ct[⊇] {A = A} {Γ}) 𝒟
wksₙₘ₊ : ∀ {A Γ Ξ} → Γ ⊢₊ Ξ allnormal
→ Γ [,] A ⊢₊ Ξ allnormal
wksₙₘ₊ {A} ξ = rensₙₘ₊ (suc {B = A}) ξ
vzₙₘ₊ : ∀ {Γ A} → Γ [,] A ⊢₊ A normal
vzₙₘ₊ {Γ} = ent (vzₙₜ₊ {Γ})
liftsₙₘ₊ : ∀ {A Γ Ξ} → Γ ⊢₊ Ξ allnormal
→ Γ [,] A ⊢₊ Ξ , A allnormal
liftsₙₘ₊ {A} {Γ} ξ = wksₙₘ₊ {A} ξ , vzₙₘ₊ {Γ}
idsₙₘ₊ : ∀ {Γ} → squash Γ ⊢₊ Γ allnormal
idsₙₘ₊ {∙} = ∙
idsₙₘ₊ {Γ , A} = liftsₙₘ₊ idsₙₘ₊
mutual
subₙₘ₊ : ∀ {Γ Ξ A} → Γ ⊢₊ Ξ allneutral → squash Ξ ⊢₊ A normal
→ Γ ⊢₊ A normal
subₙₘ₊ ξ (lam {A} 𝒟) = lam (subₙₘ₊ (liftsₙₜ₊ {A} ξ) 𝒟)
subₙₘ₊ ξ (pair 𝒟 ℰ) = pair (subₙₘ₊ ξ 𝒟) (subₙₘ₊ ξ ℰ)
subₙₘ₊ ξ unit = unit
subₙₘ₊ ξ (abort 𝒟) = abort (subₙₜ₊ ξ 𝒟)
subₙₘ₊ ξ (inl 𝒟) = inl (subₙₘ₊ ξ 𝒟)
subₙₘ₊ ξ (inr 𝒟) = inr (subₙₘ₊ ξ 𝒟)
subₙₘ₊ ξ (case {A} {B} 𝒟 ℰ ℱ) = case (subₙₜ₊ ξ 𝒟) (subₙₘ₊ (liftsₙₜ₊ {A} ξ) ℰ) (subₙₘ₊ (liftsₙₜ₊ {B} ξ) ℱ)
subₙₘ₊ ξ (ent 𝒟) = ent (subₙₜ₊ ξ 𝒟)
subₙₜ₊ : ∀ {Γ Ξ A} → Γ ⊢₊ Ξ allneutral → squash Ξ ⊢₊ A neutral
→ Γ ⊢₊ A neutral
subₙₜ₊ ξ (var i) = get ξ ([∋]→∋ i)
subₙₜ₊ ξ (app 𝒟 ℰ) = app (subₙₜ₊ ξ 𝒟) (subₙₘ₊ ξ ℰ)
subₙₜ₊ ξ (fst 𝒟) = fst (subₙₜ₊ ξ 𝒟)
subₙₜ₊ ξ (snd 𝒟) = snd (subₙₜ₊ ξ 𝒟)
subₙₜ₊ ξ (enm 𝒟) = enm (subₙₘ₊ ξ 𝒟)
cutₙₘ₊ : ∀ {Γ A B} → squash Γ ⊢₊ A neutral → squash Γ [,] A ⊢₊ B normal
→ squash Γ ⊢₊ B normal
cutₙₘ₊ {Γ} 𝒟 ℰ = subₙₘ₊ (_,_ {Ξ = Γ} idsₙₜ₊ 𝒟) ℰ
pseudocutₙₘ₊ : ∀ {Γ A B} → squash Γ ⊢₊ A normal → squash Γ [,] A ⊢₊ B normal
→ squash Γ ⊢₊ B normal
pseudocutₙₘ₊ 𝒟 ℰ = ent (app (enm (lam ℰ)) 𝒟)
mutual
thm32ₙₘ : ∀ {Γ A} → squash Γ ⊢₊ A normal
→ Γ ⊢ A true
thm32ₙₘ (lam 𝒟) = lam (thm32ₙₘ 𝒟)
thm32ₙₘ (pair 𝒟 ℰ) = pair (thm32ₙₘ 𝒟) (thm32ₙₘ ℰ)
thm32ₙₘ unit = unit
thm32ₙₘ (abort 𝒟) = abort (thm32ₙₜ 𝒟)
thm32ₙₘ (inl 𝒟) = inl (thm32ₙₘ 𝒟)
thm32ₙₘ (inr 𝒟) = inr (thm32ₙₘ 𝒟)
thm32ₙₘ (case 𝒟 ℰ ℱ) = case (thm32ₙₜ 𝒟) (thm32ₙₘ ℰ) (thm32ₙₘ ℱ)
thm32ₙₘ (ent 𝒟) = thm32ₙₜ 𝒟
thm32ₙₜ : ∀ {Γ A} → squash Γ ⊢₊ A neutral
→ Γ ⊢ A true
thm32ₙₜ (var i) = var ([∋]→∋ i)
thm32ₙₜ (app 𝒟 ℰ) = app (thm32ₙₜ 𝒟) (thm32ₙₘ ℰ)
thm32ₙₜ (fst 𝒟) = fst (thm32ₙₜ 𝒟)
thm32ₙₜ (snd 𝒟) = snd (thm32ₙₜ 𝒟)
thm32ₙₜ (enm 𝒟) = thm32ₙₘ 𝒟
thm33ₙₘ : ∀ {Γ A} → Γ ⊢ A true
→ squash Γ ⊢₊ A normal
thm33ₙₘ (var i) = ent (var (∋→[∋] i))
thm33ₙₘ (lam 𝒟) = lam (thm33ₙₘ 𝒟)
thm33ₙₘ (app 𝒟 ℰ) = ent (app (enm (thm33ₙₘ 𝒟)) (thm33ₙₘ ℰ))
thm33ₙₘ (pair 𝒟 ℰ) = pair (thm33ₙₘ 𝒟) (thm33ₙₘ ℰ)
thm33ₙₘ (fst 𝒟) = ent (fst (enm (thm33ₙₘ 𝒟)))
thm33ₙₘ (snd 𝒟) = ent (snd (enm (thm33ₙₘ 𝒟)))
thm33ₙₘ unit = unit
thm33ₙₘ (abort 𝒟) = abort (enm (thm33ₙₘ 𝒟))
thm33ₙₘ (inl 𝒟) = inl (thm33ₙₘ 𝒟)
thm33ₙₘ (inr 𝒟) = inr (thm33ₙₘ 𝒟)
thm33ₙₘ (case 𝒟 ℰ ℱ) = case (enm (thm33ₙₘ 𝒟)) (thm33ₙₘ ℰ) (thm33ₙₘ ℱ)
thm33ₙₜ : ∀ {Γ A} → Γ ⊢ A true
→ squash Γ ⊢₊ A neutral
thm33ₙₜ (var i) = var (∋→[∋] i)
thm33ₙₜ (lam 𝒟) = enm (lam (ent (thm33ₙₜ 𝒟)))
thm33ₙₜ (app 𝒟 ℰ) = app (thm33ₙₜ 𝒟) (ent (thm33ₙₜ ℰ))
thm33ₙₜ (pair 𝒟 ℰ) = enm (pair (ent (thm33ₙₜ 𝒟)) (ent (thm33ₙₜ ℰ)))
thm33ₙₜ (fst 𝒟) = fst (thm33ₙₜ 𝒟)
thm33ₙₜ (snd 𝒟) = snd (thm33ₙₜ 𝒟)
thm33ₙₜ unit = enm unit
thm33ₙₜ (abort 𝒟) = enm (abort (thm33ₙₜ 𝒟))
thm33ₙₜ (inl 𝒟) = enm (inl (ent (thm33ₙₜ 𝒟)))
thm33ₙₜ (inr 𝒟) = enm (inr (ent (thm33ₙₜ 𝒟)))
thm33ₙₜ (case 𝒟 ℰ ℱ) = enm (case (thm33ₙₜ 𝒟) (ent (thm33ₙₜ ℰ)) (ent (thm33ₙₜ ℱ)))