module A201801.S4StandardNormalisation where

open import A201801.Prelude
open import A201801.Category
open import A201801.List
open List²
open import A201801.ListLemmas
open import A201801.AllList
open import A201801.S4Propositions
open import A201801.S4StandardDerivations
open import A201801.S4StandardBidirectionalDerivations-NormalNeutral


--------------------------------------------------------------------------------


record Model : Set₁
  where
    field
      World : Set

      -- TODO: Better name
      Ground : World  String  Set

      -- TODO: Better name
      Explode : World  Form  Set

      _≥_ : World  World  Set

      id≥ :  {W}  W  W

      _∘≥_ :  {W W′ W″}  W′  W  W″  W′
                          W″  W

      relG :  {P W W′}  W′  W  Ground W P
                         Ground W′ P

      peek : World  List Assert

      peek≥ :  {W W′}  W′  W
                        peek W′  peek W

open Model {{...}} public


--------------------------------------------------------------------------------


mutual
  infix 3 _⊩_value
  _⊩_value :  {{_ : Model}}  World  Form  Set
  W  ι P value   = Ground W P
  W  A  B value =  {W′ : World}  W′  W  W′  A thunk
                                     W′  B thunk
  W   A value   = W  ⟪⊫ A  chunk

  infix 3 _⊩_thunk
  _⊩_thunk :  {{_ : Model}}  World  Form  Set
  W  A thunk =  {B} {W′ : World}  W′  W  (∀ {W″ : World}  W″  W′  W″  A value
                                                                  Explode W″ B)
                                     Explode W′ B

  infix 3 _⊩_chunk
  _⊩_chunk :  {{_ : Model}}  World  Assert  Set
  W  ⟪⊫ A  chunk = peek W  A valid[  ] × W  A thunk


infix 3 _⊩_allthunk
_⊩_allthunk :  {{_ : Model}}  World  List Form  Set
W  Γ allthunk = All (W ⊩_thunk) Γ


infix 3 _⊩_allchunk
_⊩_allchunk :  {{_ : Model}}  World  List Assert  Set
W  Δ allchunk = All (W ⊩_chunk) Δ


--------------------------------------------------------------------------------


syn :  {{_ : Model}} {A} {W : World}  W  ⟪⊫ A  chunk
                                       peek W  A valid[  ]
syn (𝒟 , k) = 𝒟


syns :  {{_ : Model}} {Δ} {W : World}  W  Δ allchunk
                                        peek W  Δ allvalid*
syns δ = maps syn δ


sem :  {{_ : Model}} {A} {W : World}  W  ⟪⊫ A  chunk
                                       W  A thunk
sem (𝒟 , k) = k


--------------------------------------------------------------------------------


mutual
  rel :  {{_ : Model}} {A} {W W′ : World}  W′  W  W  A value
                                            W′  A value
  rel {ι P}   η 𝒟 = relG η 𝒟
  rel {A  B} η f = \ η′ k  f (η ∘≥ η′) k
  rel { A}   η c = chrel η c

  threl :  {{_ : Model}} {A} {W W′ : World}  W′  W  W  A thunk
                                              W′  A thunk
  threl η k = \ η′ f  k (η ∘≥ η′) f

  chrel :  {{_ : Model}} {A} {W W′ : World}  W′  W  W  A chunk
                                              W′  A chunk
  chrel {⟪⊫ A } η c = mren (peek≥ η) (syn c) , threl {A} η (sem c)


threls :  {{_ : Model}} {Γ} {W W′ : World}  W′  W  W  Γ allthunk
                                             W′  Γ allthunk
threls η γ = maps (\ {A} k {B} {W′}  threl {A} η (\ {C} {W″}  k {C} {W″})) γ  -- NOTE: Annoying


chrels :  {{_ : Model}} {Δ} {W W′ : World}  W′  W  W  Δ allchunk
                                             W′  Δ allchunk
chrels η δ = maps (chrel η) δ


--------------------------------------------------------------------------------


return :  {{_ : Model}} {A} {W : World}  W  A value
                                          W  A thunk
return {A} a = \ η f  f id≥ (rel {A} η a)


bind :  {{_ : Model}} {A B} {W : World}  W  A thunk  (∀ {W′ : World}  W′  W  W′  A value
                                                                             W′  B thunk)
                                          W  B thunk
bind k f = \ η f′ 
             k η (\ η′ a 
               f (η ∘≥ η′) a id≥ (\ η″ b 
                 f′ (η′ ∘≥ η″) b))


--------------------------------------------------------------------------------


infix 3 _⊨_valid[_]
_⊨_valid[_] : List Assert  Form  List Form  Set₁
Δ  A valid[ Γ ] =  {{_ : Model}} {W : World}  W  Δ allchunk  W  Γ allthunk
                                                 W  A thunk


 :  {Δ Γ A}  Δ  A valid[ Γ ]
               Δ  A valid[ Γ ]
 (var i)              δ γ = get γ i
 (lam {A} {B} 𝒟)      δ γ = return {A  B} (\ η k 
                                𝒟 (chrels η δ) (threls η γ , k))
 (app {A} {B} 𝒟 )    δ γ = bind {A  B} {B} ( 𝒟 δ γ) (\ η f 
                               f id≥ (  (chrels η δ) (threls η γ)))
 (mvar i)             δ γ = sem (get δ i)
 (box {A} 𝒟)          δ γ = return { A} (msub (syns δ) 𝒟 ,  𝒟 δ )
 (letbox {A} {B} 𝒟 ) δ γ = bind { A} {B} ( 𝒟 δ γ) (\ η c 
                                 (chrels η δ , c) (threls η γ))


--------------------------------------------------------------------------------


ren² :  {Δ Δ′ Γ Γ′ A}  Δ′  Γ′ ⊇² Δ  Γ  Δ  A neutral[ Γ ]
                        Δ′  A neutral[ Γ′ ]
ren² (η₁ , η₂) 𝒟 = mrenᵣ η₁ (renᵣ η₂ 𝒟)


private
  instance
    canon : Model
    canon = record
              { World   = List² Assert Form
              ; Ground  = \ { (Δ  Γ) P  Δ  ι P neutral[ Γ ] }
              ; Explode = \ { (Δ  Γ) A  Δ  A normal[ Γ ] }
              ; _≥_     = _⊇²_
              ; id≥     = id
              ; _∘≥_    = _∘_
              ; relG    = ren²
              ; peek    = \ { (Δ  Γ)  Δ }
              ; peek≥   = \ { (η₁ , η₂)  η₁ }
              }


mutual
   :  {A Δ Γ}  Δ  A neutral[ Γ ]
                 Δ  Γ  A thunk
   {ι P}   𝒟 = return {ι P} 𝒟
   {A  B} 𝒟 = return {A  B} (\ η k   (app (ren² η 𝒟) ( k)))
   { A}   𝒟 = \ η f  letbox (ren² η 𝒟) (f (drop₁ id) (mvz ,  mvzᵣ))

   :  {A Δ Γ}  Δ  Γ  A thunk
                 Δ  A normal[ Γ ]
   {ι P}   k = k id (\ η 𝒟  use 𝒟)
   {A  B} k = k id (\ η f  lam ( (f (drop₂ id) ( vzᵣ))))
   { A}   k = k id (\ η c  box (syn c))


--------------------------------------------------------------------------------


swks :  {A : Form} {Δ : List Assert} {Γ Ξ : List Form}  Δ  Γ  Ξ allthunk
                                                         Δ  Γ , A  Ξ allthunk
swks ξ = threls (drop₂ id) ξ


slifts :  {A Δ Γ Ξ}  Δ  Γ  Ξ allthunk
                      Δ  Γ , A  Ξ , A allthunk
slifts ξ = swks ξ ,  vzᵣ


svars :  {Δ : List Assert} {Γ Γ′}  Γ′  Γ
                                    Δ  Γ′  Γ allthunk
svars done     = 
svars (drop η) = swks (svars η)
svars (keep η) = slifts (svars η)


sids :  {Δ Γ}  Δ  Γ  Γ allthunk
sids = svars id


--------------------------------------------------------------------------------


smwks :  {A : Assert} {Δ Ξ : List Assert} {Γ : List Form}  Δ  Γ  Ξ allchunk
                                                            Δ , A  Γ  Ξ allchunk
smwks ξ = chrels (drop₁ id) ξ


smlifts :  {A Δ Γ Ξ}  Δ  Γ  Ξ allchunk
                       Δ , A  Γ  Ξ , A allchunk
smlifts ξ = smwks ξ , (mvz ,  mvzᵣ)


smvars :  {Δ Δ′} {Γ : List Form}  Δ′  Δ
                                   Δ′  Γ  Δ allchunk
smvars done     = 
smvars (drop η) = smwks (smvars η)
smvars (keep η) = smlifts (smvars η)


smids :  {Δ Γ}  Δ  Γ  Δ allchunk
smids = smvars id


--------------------------------------------------------------------------------


 :  {Δ Γ A}  Δ  A valid[ Γ ]
               Δ  A normal[ Γ ]
 f =  (f smids sids)


nm :  {Δ Γ A}  Δ  A valid[ Γ ]
                Δ  A normal[ Γ ]
nm 𝒟 =  ( 𝒟)


--------------------------------------------------------------------------------


-- check1 : ∀ {Δ Γ A} → Δ ⊢ □ A valid[ Γ ] → Δ ⊢ □ A valid[ Γ ]
-- check1 𝒟 = unbox (dupbox 𝒟)

-- I : ∀ {Δ Γ A} → Δ ⊢ A ⊃ A valid[ Γ ]
-- I = lam vz

-- K : ∀ {Δ Γ A B} → Δ ⊢ A ⊃ B ⊃ A valid[ Γ ]
-- K = lam (lam (wk vz))

-- test1 : (𝒟 : ∙ ⊢ □ "A" valid[ ∙ ]) → denmₗ (nm 𝒟) ≡ 𝒟
-- test1 𝒟 = {!refl!}


-- check2 : ∀ {Δ Γ A} → Δ ⊢ □ □ A valid[ Γ ] → Δ ⊢ □ □ A valid[ Γ ]
-- check2 𝒟 = dupbox (unbox 𝒟)