module A201801.S4StandardDerivations-Traditional where
open import A201801.Prelude
open import A201801.Category
open import A201801.List
open import A201801.ListLemmas
open import A201801.ListConcatenation
open import A201801.AllList
open import A201801.S4Propositions
import A201801.S4StandardDerivations as S4
infix 3 _⨾_⊢_true
data _⨾_⊢_true : List Assert → List Form → Form → Set
where
var : ∀ {A Δ Γ} → Γ ∋ A
→ Δ ⨾ Γ ⊢ A true
lam : ∀ {A B Δ Γ} → Δ ⨾ Γ , A ⊢ B true
→ Δ ⨾ Γ ⊢ A ⊃ B true
app : ∀ {A B Δ Γ} → Δ ⨾ Γ ⊢ A ⊃ B true → Δ ⨾ Γ ⊢ A true
→ Δ ⨾ Γ ⊢ B true
mvar : ∀ {A Δ Γ} → Δ ∋ ⟪⊫ A ⟫
→ Δ ⨾ Γ ⊢ A true
box : ∀ {A Δ Γ} → Δ ⨾ ∙ ⊢ A true
→ Δ ⨾ Γ ⊢ □ A true
letbox : ∀ {A B Δ Γ} → Δ ⨾ Γ ⊢ □ A true → Δ , ⟪⊫ A ⟫ ⨾ Γ ⊢ B true
→ Δ ⨾ Γ ⊢ B true
↓ : ∀ {Δ Γ A} → Δ ⨾ Γ ⊢ A true
→ Δ S4.⊢ A valid[ Γ ]
↓ (var i) = S4.var i
↓ (lam 𝒟) = S4.lam (↓ 𝒟)
↓ (app 𝒟 ℰ) = S4.app (↓ 𝒟) (↓ ℰ)
↓ (mvar i) = S4.mvar i
↓ (box 𝒟) = S4.box (↓ 𝒟)
↓ (letbox 𝒟 ℰ) = S4.letbox (↓ 𝒟) (↓ ℰ)
↑ : ∀ {Δ Γ A} → Δ S4.⊢ A valid[ Γ ]
→ Δ ⨾ Γ ⊢ A true
↑ (S4.var i) = var i
↑ (S4.lam 𝒟) = lam (↑ 𝒟)
↑ (S4.app 𝒟 ℰ) = app (↑ 𝒟) (↑ ℰ)
↑ (S4.mvar i) = mvar i
↑ (S4.box 𝒟) = box (↑ 𝒟)
↑ (S4.letbox 𝒟 ℰ) = letbox (↑ 𝒟) (↑ ℰ)
id↓↑ : ∀ {Δ Γ A} → (𝒟 : Δ S4.⊢ A valid[ Γ ])
→ (↓ ∘ ↑) 𝒟 ≡ 𝒟
id↓↑ (S4.var i) = refl
id↓↑ (S4.lam 𝒟) = S4.lam & id↓↑ 𝒟
id↓↑ (S4.app 𝒟 ℰ) = S4.app & id↓↑ 𝒟 ⊗ id↓↑ ℰ
id↓↑ (S4.mvar i) = refl
id↓↑ (S4.box 𝒟) = S4.box & id↓↑ 𝒟
id↓↑ (S4.letbox 𝒟 ℰ) = S4.letbox & id↓↑ 𝒟 ⊗ id↓↑ ℰ
id↑↓ : ∀ {Δ Γ A} → (𝒟 : Δ ⨾ Γ ⊢ A true)
→ (↑ ∘ ↓) 𝒟 ≡ 𝒟
id↑↓ (var i) = refl
id↑↓ (lam 𝒟) = lam & id↑↓ 𝒟
id↑↓ (app 𝒟 ℰ) = app & id↑↓ 𝒟 ⊗ id↑↓ ℰ
id↑↓ (mvar i) = refl
id↑↓ (box 𝒟) = box & id↑↓ 𝒟
id↑↓ (letbox 𝒟 ℰ) = letbox & id↑↓ 𝒟 ⊗ id↑↓ ℰ