module A201801.S4ExperimentalDerivations-PartiallySymmetric where
open import A201801.Prelude
open import A201801.Category
open import A201801.List
open import A201801.ListLemmas
open import A201801.AllList
open import A201801.S4Propositions
import A201801.S4StandardDerivations as S4
import A201801.S4StandardDerivationsLemmas as S4
infix 3 _⊢_valid[_]
data _⊢_valid[_] : List Assert → Form → List Form → Set
where
vz : ∀ {A Δ Γ} → Δ ⊢ A valid[ Γ , A ]
wk : ∀ {A B Δ Γ} → Δ ⊢ A valid[ Γ ]
→ Δ ⊢ A valid[ Γ , B ]
cut : ∀ {A B Δ Γ} → Δ ⊢ A valid[ Γ ] → Δ ⊢ B valid[ Γ , A ]
→ Δ ⊢ B valid[ Γ ]
lam : ∀ {A B Δ Γ} → Δ ⊢ B valid[ Γ , A ]
→ Δ ⊢ A ⊃ B valid[ Γ ]
unlam : ∀ {A B Δ Γ} → Δ ⊢ A ⊃ B valid[ Γ ]
→ Δ ⊢ B valid[ Γ , A ]
mvz : ∀ {A Δ Γ} → Δ , ⟪⊫ A ⟫ ⊢ A valid[ Γ ]
mwk : ∀ {A B Δ Γ} → Δ ⊢ A valid[ Γ ]
→ Δ , ⟪⊫ B ⟫ ⊢ A valid[ Γ ]
box : ∀ {A Δ Γ} → Δ ⊢ A valid[ ∙ ]
→ Δ ⊢ □ A valid[ Γ ]
letbox : ∀ {A B Δ Γ} → Δ ⊢ □ A valid[ Γ ] → Δ , ⟪⊫ A ⟫ ⊢ B valid[ Γ ]
→ Δ ⊢ B valid[ Γ ]
infix 3 _⊢_allvalid[_]
_⊢_allvalid[_] : List Assert → List Form → List Form → Set
Δ ⊢ Ξ allvalid[ Γ ] = All (\ A → Δ ⊢ A valid[ Γ ]) Ξ
infix 3 _⊢_allvalid*
_⊢_allvalid* : List Assert → List Assert → Set
Δ ⊢ Ξ allvalid* = All (\ { ⟪⊫ A ⟫ → Δ ⊢ A valid[ ∙ ] }) Ξ
wks : ∀ {A Δ Γ Ξ} → Δ ⊢ Ξ allvalid[ Γ ]
→ Δ ⊢ Ξ allvalid[ Γ , A ]
wks ξ = maps wk ξ
lifts : ∀ {A Δ Γ Ξ} → Δ ⊢ Ξ allvalid[ Γ ]
→ Δ ⊢ Ξ , A allvalid[ Γ , A ]
lifts ξ = wks ξ , vz
vars : ∀ {Δ Γ Γ′} → Γ′ ⊇ Γ
→ Δ ⊢ Γ allvalid[ Γ′ ]
vars done = ∙
vars (drop η) = wks (vars η)
vars (keep η) = lifts (vars η)
ids : ∀ {Δ Γ} → Δ ⊢ Γ allvalid[ Γ ]
ids = vars id
mwks : ∀ {A Δ Γ Ξ} → Δ ⊢ Ξ allvalid[ Γ ]
→ Δ , ⟪⊫ A ⟫ ⊢ Ξ allvalid[ Γ ]
mwks ξ = maps mwk ξ
mwks* : ∀ {A Δ Ξ} → Δ ⊢ Ξ allvalid*
→ Δ , ⟪⊫ A ⟫ ⊢ Ξ allvalid*
mwks* ξ = maps mwk ξ
mlifts* : ∀ {A Δ Ξ} → Δ ⊢ Ξ allvalid*
→ Δ , ⟪⊫ A ⟫ ⊢ Ξ , ⟪⊫ A ⟫ allvalid*
mlifts* ξ = mwks* ξ , mvz
mvars* : ∀ {Δ Δ′} → Δ′ ⊇ Δ
→ Δ′ ⊢ Δ allvalid*
mvars* done = ∙
mvars* (drop η) = mwks* (mvars* η)
mvars* (keep η) = mlifts* (mvars* η)
mids* : ∀ {Δ} → Δ ⊢ Δ allvalid*
mids* = mvars* id
vau : ∀ {Δ Γ A B} → Δ , ⟪⊫ A ⟫ ⊢ B valid[ Γ ]
→ Δ ⊢ B valid[ Γ , □ A ]
vau 𝒟 = letbox vz (wk 𝒟)
unvau : ∀ {Δ Γ A B} → Δ ⊢ B valid[ Γ , □ A ]
→ Δ , ⟪⊫ A ⟫ ⊢ B valid[ Γ ]
unvau 𝒟 = cut (box mvz) (mwk 𝒟)
vaus : ∀ {Δ Γ Ξ A} → Δ , ⟪⊫ A ⟫ ⊢ Ξ allvalid[ Γ ]
→ Δ ⊢ Ξ allvalid[ Γ , □ A ]
vaus 𝒟 = maps vau 𝒟
sub : ∀ {Δ Γ Ξ A} → Δ ⊢ Ξ allvalid[ Γ ] → Δ ⊢ A valid[ Ξ ]
→ Δ ⊢ A valid[ Γ ]
sub (ξ , 𝒞) vz = 𝒞
sub (ξ , 𝒞) (wk 𝒟) = sub ξ 𝒟
sub ξ (cut 𝒟 ℰ) = cut (sub ξ 𝒟) (sub (lifts ξ) ℰ)
sub ξ (lam 𝒟) = lam (sub (lifts ξ) 𝒟)
sub (ξ , 𝒞) (unlam 𝒟) = cut 𝒞 (unlam (sub ξ 𝒟))
sub ξ mvz = mvz
sub ξ (mwk 𝒟) = unvau (sub (vaus ξ) 𝒟)
sub ξ (box 𝒟) = box 𝒟
sub ξ (letbox 𝒟 ℰ) = letbox (sub ξ 𝒟) (sub (mwks ξ) ℰ)
pseudomcut : ∀ {Δ Γ A B} → Δ ⊢ A valid[ ∙ ] → Δ , ⟪⊫ A ⟫ ⊢ B valid[ Γ ]
→ Δ ⊢ B valid[ Γ ]
pseudomcut 𝒟 ℰ = letbox (box 𝒟) ℰ
msub : ∀ {Δ Γ Ξ A} → Δ ⊢ Ξ allvalid* → Ξ ⊢ A valid[ Γ ]
→ Δ ⊢ A valid[ Γ ]
msub ξ vz = vz
msub ξ (wk 𝒟) = wk (msub ξ 𝒟)
msub ξ (cut 𝒟 ℰ) = cut (msub ξ 𝒟) (msub ξ ℰ)
msub ξ (lam 𝒟) = lam (msub ξ 𝒟)
msub ξ (unlam 𝒟) = unlam (msub ξ 𝒟)
msub (ξ , 𝒞) mvz = pseudomcut 𝒞 mvz
msub (ξ , 𝒞) (mwk 𝒟) = msub ξ 𝒟
msub ξ (box 𝒟) = box (msub ξ 𝒟)
msub ξ (letbox 𝒟 ℰ) = letbox (msub ξ 𝒟) (msub (mlifts* ξ) ℰ)
var : ∀ {Δ Γ A} → Γ ∋ A
→ Δ ⊢ A valid[ Γ ]
var zero = vz
var (suc i) = wk (var i)
app : ∀ {Δ Γ A B} → Δ ⊢ A ⊃ B valid[ Γ ] → Δ ⊢ A valid[ Γ ]
→ Δ ⊢ B valid[ Γ ]
app 𝒟 ℰ = cut ℰ (unlam 𝒟)
mvar : ∀ {Δ Γ A} → Δ ∋ ⟪⊫ A ⟫
→ Δ ⊢ A valid[ Γ ]
mvar zero = mvz
mvar (suc i) = mwk (mvar i)
rebox : ∀ {Δ Γ A} → Δ ⊢ □ A valid[ Γ ]
→ Δ ⊢ □ A valid[ Γ ]
rebox 𝒟 = letbox 𝒟 (box mvz)
↓ : ∀ {Δ Γ A} → Δ ⊢ A valid[ Γ ]
→ Δ S4.⊢ A valid[ Γ ]
↓ vz = S4.vz
↓ (wk 𝒟) = S4.wk (↓ 𝒟)
↓ (cut 𝒟 ℰ) = S4.cut (↓ 𝒟) (↓ ℰ)
↓ (lam 𝒟) = S4.lam (↓ 𝒟)
↓ (unlam 𝒟) = S4.unlam (↓ 𝒟)
↓ mvz = S4.mvz
↓ (mwk 𝒟) = S4.mwk (↓ 𝒟)
↓ (box 𝒟) = S4.box (↓ 𝒟)
↓ (letbox 𝒟 ℰ) = S4.letbox (↓ 𝒟) (↓ ℰ)
↑ : ∀ {Δ Γ A} → Δ S4.⊢ A valid[ Γ ]
→ Δ ⊢ A valid[ Γ ]
↑ (S4.var i) = var i
↑ (S4.lam 𝒟) = lam (↑ 𝒟)
↑ (S4.app 𝒟 ℰ) = app (↑ 𝒟) (↑ ℰ)
↑ (S4.mvar i) = mvar i
↑ (S4.box 𝒟) = box (↑ 𝒟)
↑ (S4.letbox 𝒟 ℰ) = letbox (↑ 𝒟) (↑ ℰ)
lem-var : ∀ {Δ Γ A} → (i : Γ ∋ A)
→ ↓ {Δ} (var i) ≡ S4.var i
lem-var zero = refl
lem-var (suc i) = S4.wk & lem-var i
⋮ S4.var ∘ suc & id-ren∋ i
lem-mvar : ∀ {Δ Γ A} → (i : Δ ∋ ⟪⊫ A ⟫)
→ ↓ {Γ = Γ} (mvar i) ≡ S4.mvar i
lem-mvar zero = refl
lem-mvar (suc i) = S4.mwk & lem-mvar i
⋮ S4.mvar ∘ suc & id-ren∋ i
id↓↑ : ∀ {Δ Γ A} → (𝒟 : Δ S4.⊢ A valid[ Γ ])
→ (↓ ∘ ↑) 𝒟 ≡ 𝒟
id↓↑ (S4.var i) = lem-var i
id↓↑ (S4.lam 𝒟) = S4.lam & id↓↑ 𝒟
id↓↑ (S4.app 𝒟 ℰ) = S4.app & ( S4.id-cons-wk-sub S4.ids (↓ (↑ ℰ)) (↓ (↑ 𝒟))
⋮ S4.id-sub (↓ (↑ 𝒟))
⋮ id↓↑ 𝒟
)
⊗ id↓↑ ℰ
id↓↑ (S4.mvar i) = lem-mvar i
id↓↑ (S4.box 𝒟) = S4.box & id↓↑ 𝒟
id↓↑ (S4.letbox 𝒟 ℰ) = S4.letbox & id↓↑ 𝒟 ⊗ id↓↑ ℰ