module A201801.S4ExperimentalDerivations-Monolithic where

open import A201801.Prelude
open import A201801.Category
open import A201801.List
open import A201801.ListLemmas
open import A201801.AllList
open import A201801.S4Propositions
import A201801.S4StandardDerivations as S4


--------------------------------------------------------------------------------


infix 3 _⊢_valid[_]
data _⊢_valid[_] : List Assert  Form  List Form  Set
  where
    vz :  {A Δ Γ}  Δ  A valid[ Γ , A ]

    wk :  {A B Δ Γ}  Δ  A valid[ Γ ]
                      Δ  A valid[ Γ , B ]

    lam :  {A B Δ Γ}  Δ  B valid[ Γ , A ]
                       Δ  A  B valid[ Γ ]

    app :  {A B Δ Γ}  Δ  A  B valid[ Γ ]  Δ  A valid[ Γ ]
                       Δ  B valid[ Γ ]

    mvz :  {A Δ Γ}  Δ , ⟪⊫ A   A valid[ Γ ]

    mwk :  {A B Δ Γ}  Δ  A valid[ Γ ]
                       Δ , ⟪⊫ B   A valid[ Γ ]

    box :  {A Δ Γ}  Δ  A valid[  ]
                     Δ   A valid[ Γ ]

    letbox :  {A B Δ Γ}  Δ   A valid[ Γ ]  Δ , ⟪⊫ A   B valid[ Γ ]
                          Δ  B valid[ Γ ]


infix 3 _⊢_allvalid[_]
_⊢_allvalid[_] : List Assert  List Form  List Form  Set
Δ  Ξ allvalid[ Γ ] = All (\ A  Δ  A valid[ Γ ]) Ξ


infix 3 _⊢_allvalid*
_⊢_allvalid* : List Assert  List Assert  Set
Δ  Ξ allvalid* = All (\ { ⟪⊫ A   Δ  A valid[  ] }) Ξ


--------------------------------------------------------------------------------


wks :  {A Δ Γ Ξ}  Δ  Ξ allvalid[ Γ ]
                   Δ  Ξ allvalid[ Γ , A ]
wks ξ = maps wk ξ


lifts :  {A Δ Γ Ξ}  Δ  Ξ allvalid[ Γ ]
                     Δ  Ξ , A allvalid[ Γ , A ]
lifts ξ = wks ξ , vz


vars :  {Δ Γ Γ′}  Γ′  Γ
                   Δ  Γ allvalid[ Γ′ ]
vars done     = 
vars (drop η) = wks (vars η)
vars (keep η) = lifts (vars η)


ids :  {Δ Γ}  Δ  Γ allvalid[ Γ ]
ids = vars id


--------------------------------------------------------------------------------


mwks :  {A Δ Γ Ξ}  Δ  Ξ allvalid[ Γ ]
                    Δ , ⟪⊫ A   Ξ allvalid[ Γ ]
mwks ξ = maps mwk ξ


mwks* :  {A Δ Ξ}  Δ  Ξ allvalid*
                   Δ , ⟪⊫ A   Ξ allvalid*
mwks* ξ = maps mwk ξ


mlifts* :  {A Δ Ξ}  Δ  Ξ allvalid*
                     Δ , ⟪⊫ A   Ξ , ⟪⊫ A  allvalid*
mlifts* ξ = mwks* ξ , mvz


mvars* :  {Δ Δ′}  Δ′  Δ
                   Δ′  Δ allvalid*
mvars* done     = 
mvars* (drop η) = mwks* (mvars* η)
mvars* (keep η) = mlifts* (mvars* η)


mids* :  {Δ}  Δ  Δ allvalid*
mids* = mvars* id


--------------------------------------------------------------------------------


vau :  {Δ Γ A B}  Δ , ⟪⊫ A   B valid[ Γ ]
                   Δ  B valid[ Γ ,  A ]
vau 𝒟 = letbox vz (wk 𝒟)


unvau :  {Δ Γ A B}  Δ  B valid[ Γ ,  A ]
                     Δ , ⟪⊫ A   B valid[ Γ ]
unvau 𝒟 = app (lam (mwk 𝒟)) (box mvz)


vaus :  {Δ Γ Ξ A}  Δ , ⟪⊫ A   Ξ allvalid[ Γ ]
                    Δ  Ξ allvalid[ Γ ,  A ]
vaus 𝒟 = maps vau 𝒟


sub :  {Δ Γ Ξ A}  Δ  Ξ allvalid[ Γ ]  Δ  A valid[ Ξ ]
                   Δ  A valid[ Γ ]
sub (ξ , 𝒞) vz           = 𝒞
sub (ξ , 𝒞) (wk 𝒟)       = sub ξ 𝒟
sub ξ       (lam 𝒟)      = lam (sub (lifts ξ) 𝒟)
sub ξ       (app 𝒟 )    = app (sub ξ 𝒟) (sub ξ )
sub ξ       mvz          = mvz
sub ξ       (mwk 𝒟)      = unvau (sub (vaus ξ) 𝒟)  -- NOTE: Interesting
sub ξ       (box 𝒟)      = box 𝒟
sub ξ       (letbox 𝒟 ) = letbox (sub ξ 𝒟) (sub (mwks ξ) )


--------------------------------------------------------------------------------


msub :  {Δ Γ Ξ A}  Δ  Ξ allvalid*  Ξ  A valid[ Γ ]
                    Δ  A valid[ Γ ]
msub ξ       vz           = vz
msub ξ       (wk 𝒟)       = wk (msub ξ 𝒟)
msub ξ       (lam 𝒟)      = lam (msub ξ 𝒟)
msub ξ       (app 𝒟 )    = app (msub ξ 𝒟) (msub ξ )
msub (ξ , 𝒞) mvz          = letbox (box 𝒞) mvz
msub (ξ , 𝒞) (mwk 𝒟)      = msub ξ 𝒟
msub ξ       (box 𝒟)      = box (msub ξ 𝒟)
msub ξ       (letbox 𝒟 ) = letbox (msub ξ 𝒟) (msub (mlifts* ξ) )


--------------------------------------------------------------------------------


var :  {Δ Γ A}  Γ  A
                 Δ  A valid[ Γ ]
var zero    = vz
var (suc i) = wk (var i)


mvar :  {Δ Γ A}  Δ  ⟪⊫ A 
                  Δ  A valid[ Γ ]
mvar zero    = mvz
mvar (suc i) = mwk (mvar i)


-- NOTE: Local completeness of □

rebox :  {Δ Γ A}  Δ   A valid[ Γ ]
                   Δ   A valid[ Γ ]
rebox 𝒟 = letbox 𝒟 (box mvz)


-- NOTE: Local soundness of □

pseudomcut :  {Δ Γ A B}  Δ  A valid[  ]  Δ , ⟪⊫ A   B valid[ Γ ]
                          Δ  B valid[ Γ ]
pseudomcut 𝒟  = letbox (box 𝒟) 


--------------------------------------------------------------------------------


 :  {Δ Γ A}  Δ  A valid[ Γ ]
               Δ S4.⊢ A valid[ Γ ]
 vz           = S4.vz
 (wk 𝒟)       = S4.wk ( 𝒟)
 (lam 𝒟)      = S4.lam ( 𝒟)
 (app 𝒟 )    = S4.app ( 𝒟) ( )
 mvz          = S4.mvz
 (mwk 𝒟)      = S4.mwk ( 𝒟)
 (box 𝒟)      = S4.box ( 𝒟)
 (letbox 𝒟 ) = S4.letbox ( 𝒟) ( )


 :  {Δ Γ A}  Δ S4.⊢ A valid[ Γ ]
               Δ  A valid[ Γ ]
 (S4.var i)      = var i
 (S4.lam 𝒟)      = lam ( 𝒟)
 (S4.app 𝒟 )    = app ( 𝒟) ( )
 (S4.mvar i)     = mvar i
 (S4.box 𝒟)      = box ( 𝒟)
 (S4.letbox 𝒟 ) = letbox ( 𝒟) ( )


lem-var :  {Δ Γ A}  (i : Γ  A)
                      {Δ} (var i)  S4.var i
lem-var zero    = refl
lem-var (suc i) = S4.wk & lem-var i
                 S4.var  suc & id-ren∋ i


lem-mvar :  {Δ Γ A}  (i : Δ  ⟪⊫ A )
                       {Γ = Γ} (mvar i)  S4.mvar i
lem-mvar zero    = refl
lem-mvar (suc i) = S4.mwk & lem-mvar i
                  S4.mvar  suc & id-ren∋ i


id↓↑ :  {Δ Γ A}  (𝒟 : Δ S4.⊢ A valid[ Γ ])
                  (  ) 𝒟  𝒟
id↓↑ (S4.var i)      = lem-var i
id↓↑ (S4.lam 𝒟)      = S4.lam & id↓↑ 𝒟
id↓↑ (S4.app 𝒟 )    = S4.app & id↓↑ 𝒟  id↓↑ 
id↓↑ (S4.mvar i)     = lem-mvar i
id↓↑ (S4.box 𝒟)      = S4.box & id↓↑ 𝒟
id↓↑ (S4.letbox 𝒟 ) = S4.letbox & id↓↑ 𝒟  id↓↑ 


-- NOTE: Problematic

-- id↑↓ : ∀ {Δ Γ A} → (𝒟 : Δ ⊢ A valid[ Γ ])
--                  → (↑ ∘ ↓) 𝒟 ≡ 𝒟
-- id↑↓ vz           = refl
-- id↑↓ (wk 𝒟)       = {!!} -- ↑ (S4.wk (↓ 𝒟)) ≡ wk 𝒟
-- id↑↓ (lam 𝒟)      = lam & id↑↓ 𝒟
-- id↑↓ (app 𝒟 ℰ)    = app & id↑↓ 𝒟 ⊗ id↑↓ ℰ
-- id↑↓ mvz          = refl
-- id↑↓ (mwk 𝒟)      = {!!} -- ↑ (S4.mwk (↓ 𝒟)) ≡ mwk 𝒟
-- id↑↓ (box 𝒟)      = box & id↑↓ 𝒟
-- id↑↓ (letbox 𝒟 ℰ) = letbox & id↑↓ 𝒟 ⊗ id↑↓ ℰ


-- TODO: Semantic equivalence


--------------------------------------------------------------------------------