module A201801.IPLExperimentalDerivations-Symmetric where open import A201801.Prelude open import A201801.Category open import A201801.List open import A201801.ListLemmas open import A201801.AllList open import A201801.IPLPropositions -------------------------------------------------------------------------------- infix 3 _⊢_true data _⊢_true : List Form → Form → Set where var : ∀ {A Γ} → Γ ∋ A → Γ ⊢ A true cut : ∀ {A B Γ} → Γ ⊢ A true → Γ , A ⊢ B true → Γ ⊢ B true lam : ∀ {A B Γ} → Γ , A ⊢ B true → Γ ⊢ A ⊃ B true unlam : ∀ {A B Γ} → Γ ⊢ A ⊃ B true → Γ , A ⊢ B true -------------------------------------------------------------------------------- -- NOTE: Problematic -- ren : ∀ {Γ Γ′ A} → Γ′ ⊇ Γ → Γ ⊢ A true -- → Γ′ ⊢ A true -- ren η (var i) = var (ren∋ η i) -- ren η (cut 𝒟 ℰ) = cut (ren η 𝒟) (ren (keep η) ℰ) -- ren η (lam 𝒟) = lam (ren (keep η) 𝒟) -- ren η (unlam 𝒟) = {!!} -- Γ′ ⊢ B true --------------------------------------------------------------------------------