{-# OPTIONS --rewriting #-}
module A201706.IMCMLSyntaxNoTerms where
open import A201706.IMCML public
open IMCMLList public
⌈_⌉ : Ty⋆ → BoxTy⋆
⌈ Ξ ⌉ = map ([ ∅ ]_) Ξ
∋→⌈∋⌉ : ∀ {Ξ A} → Ξ ∋ A → ⌈ Ξ ⌉ ∋ [ ∅ ] A
∋→⌈∋⌉ zero = zero
∋→⌈∋⌉ (suc 𝒾) = suc (∋→⌈∋⌉ 𝒾)
Cx : Set
Cx = Ty⋆ ∧ Ty⋆
mutual
infix 3 _⊢_
data _⊢_ : Cx → Ty → Set where
var : ∀ {Δ Γ A} →
Γ ∋ A →
Δ ⁏ Γ ⊢ A
mvar : ∀ {Δ Γ A} →
Δ ∋ A →
Δ ⁏ Γ ⊢ A
lam : ∀ {Δ Γ A B} →
Δ ⁏ Γ , A ⊢ B →
Δ ⁏ Γ ⊢ A ⇒ B
app : ∀ {Δ Γ A B} →
Δ ⁏ Γ ⊢ A ⇒ B → Δ ⁏ Γ ⊢ A →
Δ ⁏ Γ ⊢ B
box : ∀ {Δ Γ Φ A} →
Δ ⟨⊢⟩ [ Φ ] A →
Δ ⁏ Γ ⊢ [ Φ ] A
unbox : ∀ {Δ Γ Φ A C} →
Δ ⟨⊢⟩⋆ ⌈ Φ ⌉ → Δ ⁏ Γ ⊢ [ Φ ] A → Δ , A ⁏ Γ ⊢ C →
Δ ⁏ Γ ⊢ C
infix 3 _⟨⊢⟩_
_⟨⊢⟩_ : Ty⋆ → BoxTy → Set
Δ ⟨⊢⟩ [ Φ ] A = Δ ⧺ Φ ⁏ ∅ ⊢ A
infix 3 _⟨⊢⟩⋆_
_⟨⊢⟩⋆_ : Ty⋆ → BoxTy⋆ → Set
Δ ⟨⊢⟩⋆ Ξ = All (Δ ⟨⊢⟩_) Ξ
mutual
mono⊢ : ∀ {Δ Γ Δ′ Γ′ A} → Δ′ ⊇ Δ → Γ′ ⊇ Γ → Δ ⁏ Γ ⊢ A → Δ′ ⁏ Γ′ ⊢ A
mono⊢ ζ η (var 𝒾) = var (mono∋ η 𝒾)
mono⊢ ζ η (mvar 𝒾) = mvar (mono∋ ζ 𝒾)
mono⊢ ζ η (lam 𝒟) = lam (mono⊢ ζ (lift η) 𝒟)
mono⊢ ζ η (app 𝒟 ℰ) = app (mono⊢ ζ η 𝒟) (mono⊢ ζ η ℰ)
mono⊢ ζ η (box {Φ = Φ} 𝒟) = box (mono⟨⊢⟩ {Φ} ζ 𝒟)
mono⊢ ζ η (unbox φ 𝒟 ℰ) = unbox (mono⟨⊢⟩⋆ ζ φ) (mono⊢ ζ η 𝒟) (mono⊢ (lift ζ) η ℰ)
mono⟨⊢⟩ : ∀ {Φ Δ Δ′ A} → Δ′ ⊇ Δ → Δ ⟨⊢⟩ [ Φ ] A → Δ′ ⟨⊢⟩ [ Φ ] A
mono⟨⊢⟩ {Φ} ζ 𝒟 = mono⊢ (lift⊇⧺ ζ Φ) refl⊇ 𝒟
mono⟨⊢⟩⋆ : ∀ {Ξ Δ Δ′} → Δ′ ⊇ Δ → Δ ⟨⊢⟩⋆ Ξ → Δ′ ⟨⊢⟩⋆ Ξ
mono⟨⊢⟩⋆ {∅} ζ ∅ = ∅
mono⟨⊢⟩⋆ {Ξ , [ Φ ] A} ζ (ξ , 𝒟) = mono⟨⊢⟩⋆ ζ ξ , mono⟨⊢⟩ {Φ} ζ 𝒟
mutual
idmono⊢ : ∀ {Δ Γ A} → (𝒟 : Δ ⁏ Γ ⊢ A) → mono⊢ refl⊇ refl⊇ 𝒟 ≡ 𝒟
idmono⊢ (var 𝒾) = cong var (idmono∋ 𝒾)
idmono⊢ (mvar 𝒾) = cong mvar (idmono∋ 𝒾)
idmono⊢ (lam 𝒟) = cong lam (idmono⊢ 𝒟)
idmono⊢ (app 𝒟 ℰ) = cong² app (idmono⊢ 𝒟) (idmono⊢ ℰ)
idmono⊢ (box {Φ = Φ} 𝒟) = cong box (idmono⟨⊢⟩ {Φ} 𝒟)
idmono⊢ (unbox φ 𝒟 ℰ) = cong³ unbox (idmono⟨⊢⟩⋆ φ) (idmono⊢ 𝒟) (idmono⊢ ℰ)
idmono⟨⊢⟩ : ∀ {Φ Δ A} → (𝒟 : Δ ⟨⊢⟩ [ Φ ] A) → mono⟨⊢⟩ {Φ} refl⊇ 𝒟 ≡ 𝒟
idmono⟨⊢⟩ 𝒟 = idmono⊢ 𝒟
idmono⟨⊢⟩⋆ : ∀ {Ξ Δ} → (ξ : Δ ⟨⊢⟩⋆ Ξ) → mono⟨⊢⟩⋆ refl⊇ ξ ≡ ξ
idmono⟨⊢⟩⋆ {∅} ∅ = refl
idmono⟨⊢⟩⋆ {Ξ , [ Φ ] A} (ξ , 𝒟) = cong² _,_ (idmono⟨⊢⟩⋆ ξ) (idmono⟨⊢⟩ {Φ} 𝒟)
mutual
assocmono⊢ : ∀ {Δ Γ Δ′ Γ′ Δ″ Γ″ A} →
(ζ′ : Δ″ ⊇ Δ′) (η′ : Γ″ ⊇ Γ′) (ζ : Δ′ ⊇ Δ) (η : Γ′ ⊇ Γ) (𝒟 : Δ ⁏ Γ ⊢ A) →
mono⊢ ζ′ η′ (mono⊢ ζ η 𝒟) ≡ mono⊢ (trans⊇ ζ′ ζ) (trans⊇ η′ η) 𝒟
assocmono⊢ ζ′ η′ ζ η (var 𝒾) = cong var (assocmono∋ η′ η 𝒾)
assocmono⊢ ζ′ η′ ζ η (mvar 𝒾) = cong mvar (assocmono∋ ζ′ ζ 𝒾)
assocmono⊢ ζ′ η′ ζ η (lam 𝒟) = cong lam (assocmono⊢ ζ′ (lift η′) ζ (lift η) 𝒟)
assocmono⊢ ζ′ η′ ζ η (app 𝒟 ℰ) = cong² app (assocmono⊢ ζ′ η′ ζ η 𝒟) (assocmono⊢ ζ′ η′ ζ η ℰ)
assocmono⊢ ζ′ η′ ζ η (box {Φ = Φ} 𝒟) = cong box (assocmono⟨⊢⟩ {Φ} ζ′ ζ 𝒟)
assocmono⊢ ζ′ η′ ζ η (unbox φ 𝒟 ℰ) = cong³ unbox (assocmono⟨⊢⟩⋆ ζ′ ζ φ) (assocmono⊢ ζ′ η′ ζ η 𝒟) (assocmono⊢ (lift ζ′) η′ (lift ζ) η ℰ)
assocmono⟨⊢⟩ : ∀ {Φ Δ Δ′ Δ″ A} →
(ζ′ : Δ″ ⊇ Δ′) (ζ : Δ′ ⊇ Δ) (𝒟 : Δ ⟨⊢⟩ [ Φ ] A) →
mono⟨⊢⟩ {Φ} ζ′ (mono⟨⊢⟩ {Φ} ζ 𝒟) ≡ mono⟨⊢⟩ {Φ} (trans⊇ ζ′ ζ) 𝒟
assocmono⟨⊢⟩ {Φ} ζ′ ζ 𝒟 = assocmono⊢ (lift⊇⧺ ζ′ Φ) refl⊇ (lift⊇⧺ ζ Φ) refl⊇ 𝒟
assocmono⟨⊢⟩⋆ : ∀ {Ξ Δ Δ′ Δ″} →
(ζ′ : Δ″ ⊇ Δ′) (ζ : Δ′ ⊇ Δ) (ξ : Δ ⟨⊢⟩⋆ Ξ) →
mono⟨⊢⟩⋆ ζ′ (mono⟨⊢⟩⋆ ζ ξ) ≡ mono⟨⊢⟩⋆ (trans⊇ ζ′ ζ) ξ
assocmono⟨⊢⟩⋆ {∅} ζ′ ζ ∅ = refl
assocmono⟨⊢⟩⋆ {Ξ , [ Φ ] A} ζ′ ζ (ξ , 𝒟) = cong² _,_ (assocmono⟨⊢⟩⋆ ζ′ ζ ξ) (assocmono⟨⊢⟩ {Φ} ζ′ ζ 𝒟)
infix 3 _⊢⋆_
_⊢⋆_ : Cx → Ty⋆ → Set
Δ ⁏ Γ ⊢⋆ Ξ = All (Δ ⁏ Γ ⊢_) Ξ
mono⊢⋆ : ∀ {Δ Γ Δ′ Γ′ Ξ} → Δ′ ⊇ Δ → Γ′ ⊇ Γ → Δ ⁏ Γ ⊢⋆ Ξ → Δ′ ⁏ Γ′ ⊢⋆ Ξ
mono⊢⋆ ζ η ξ = mapAll (mono⊢ ζ η) ξ
refl⊢⋆ : ∀ {Γ Δ} → Δ ⁏ Γ ⊢⋆ Γ
refl⊢⋆ {∅} = ∅
refl⊢⋆ {Γ , A} = mono⊢⋆ refl⊇ (weak refl⊇) refl⊢⋆ , var zero
lookup⊢ : ∀ {Δ Γ Ξ A} → Δ ⁏ Γ ⊢⋆ Ξ → Ξ ∋ A → Δ ⁏ Γ ⊢ A
lookup⊢ ξ 𝒾 = lookupAll ξ 𝒾
graft⊢ : ∀ {Δ Γ Ψ A} → Δ ⁏ Γ ⊢⋆ Ψ → Δ ⁏ Ψ ⊢ A → Δ ⁏ Γ ⊢ A
graft⊢ ψ (var 𝒾) = lookup⊢ ψ 𝒾
graft⊢ ψ (mvar 𝒾) = mvar 𝒾
graft⊢ ψ (lam 𝒟) = lam (graft⊢ (mono⊢⋆ refl⊇ (weak refl⊇) ψ , var zero) 𝒟)
graft⊢ ψ (app 𝒟 ℰ) = app (graft⊢ ψ 𝒟) (graft⊢ ψ ℰ)
graft⊢ ψ (box 𝒟) = box 𝒟
graft⊢ ψ (unbox φ 𝒟 ℰ) = unbox φ (graft⊢ ψ 𝒟) (graft⊢ (mono⊢⋆ (weak refl⊇) refl⊇ ψ) ℰ)
graft⊢⋆ : ∀ {Δ Γ Ψ Ξ} → Δ ⁏ Γ ⊢⋆ Ψ → Δ ⁏ Ψ ⊢⋆ Ξ → Δ ⁏ Γ ⊢⋆ Ξ
graft⊢⋆ ψ ∅ = ∅
graft⊢⋆ ψ (ξ , 𝒟) = graft⊢⋆ ψ ξ , graft⊢ ψ 𝒟
trans⊢⋆ : ∀ {Δ Γ Γ′ Γ″} → Δ ⁏ Γ″ ⊢⋆ Γ′ → Δ ⁏ Γ′ ⊢⋆ Γ → Δ ⁏ Γ″ ⊢⋆ Γ
trans⊢⋆ γ′ γ = graft⊢⋆ γ′ γ
concat⟨⊢⟩⋆ : ∀ {`Φ `Ξ Φ Ξ} → Ξ ⟨⊢⟩⋆ ⌈ Φ ⌉ → `Ξ ⟨⊢⟩⋆ ⌈ `Φ ⌉ → Ξ ⧺ `Ξ ⟨⊢⟩⋆ ⌈ Φ ⧺ `Φ ⌉
concat⟨⊢⟩⋆ {∅} {`Ξ} {Φ} {Ξ} φ ∅ = mono⟨⊢⟩⋆ (weak⊇⧺ refl⊇ `Ξ) φ
concat⟨⊢⟩⋆ {`Φ , `A} {`Ξ} {Φ} {Ξ} φ (`φ , `𝒟) = concat⟨⊢⟩⋆ φ `φ , mono⟨⊢⟩ {∅} (weak⊇⧺₁ `Ξ) `𝒟
mrefl⟨⊢⟩⋆ : ∀ {Δ} → Δ ⟨⊢⟩⋆ ⌈ Δ ⌉
mrefl⟨⊢⟩⋆ {∅} = ∅
mrefl⟨⊢⟩⋆ {Δ , A} = mono⟨⊢⟩⋆ (weak refl⊇) mrefl⟨⊢⟩⋆ , mvar zero
mlookup⟨⊢⟩ : ∀ {Δ Ξ Φ A} → Δ ⟨⊢⟩⋆ Ξ → Ξ ∋ [ Φ ] A → Δ ⟨⊢⟩ [ Φ ] A
mlookup⟨⊢⟩ ξ 𝒾 = lookupAll ξ 𝒾
mutual
mgraft⊢ : ∀ {Δ Γ Φ A} → Δ ⟨⊢⟩⋆ ⌈ Φ ⌉ → Φ ⁏ Γ ⊢ A → Δ ⁏ Γ ⊢ A
mgraft⊢ φ (var 𝒾) = var 𝒾
mgraft⊢ φ (mvar 𝒾) = graft⊢ ∅ (mlookup⟨⊢⟩ φ (∋→⌈∋⌉ 𝒾))
mgraft⊢ φ (lam 𝒟) = lam (mgraft⊢ φ 𝒟)
mgraft⊢ φ (app 𝒟 ℰ) = app (mgraft⊢ φ 𝒟) (mgraft⊢ φ ℰ)
mgraft⊢ φ (box {Φ = `Φ} 𝒟) = box (mgraft⟨⊢⟩ {`Φ} φ 𝒟)
mgraft⊢ φ (unbox `φ 𝒟 ℰ) = unbox (mgraft⟨⊢⟩⋆ φ `φ) (mgraft⊢ φ 𝒟) (mgraft⊢ (mono⟨⊢⟩⋆ (weak refl⊇) φ , mvar zero) ℰ)
mgraft⟨⊢⟩ : ∀ {`Φ Φ Δ A} → Δ ⟨⊢⟩⋆ ⌈ Φ ⌉ → Φ ⟨⊢⟩ [ `Φ ] A → Δ ⟨⊢⟩ [ `Φ ] A
mgraft⟨⊢⟩ {`Φ} φ 𝒟 = mgraft⊢ (concat⟨⊢⟩⋆ {`Φ} φ mrefl⟨⊢⟩⋆) 𝒟
mgraft⟨⊢⟩⋆ : ∀ {Ξ Δ Φ} → Δ ⟨⊢⟩⋆ ⌈ Φ ⌉ → Φ ⟨⊢⟩⋆ Ξ → Δ ⟨⊢⟩⋆ Ξ
mgraft⟨⊢⟩⋆ {∅} φ ∅ = ∅
mgraft⟨⊢⟩⋆ {Ξ , [ `Φ ] A} φ (ξ , 𝒟) = mgraft⟨⊢⟩⋆ φ ξ , mgraft⟨⊢⟩ {`Φ} φ 𝒟
mgraft⊢⋆ : ∀ {Δ Γ Φ Ξ} → Δ ⟨⊢⟩⋆ ⌈ Φ ⌉ → Φ ⁏ Γ ⊢⋆ Ξ → Δ ⁏ Γ ⊢⋆ Ξ
mgraft⊢⋆ φ ξ = mapAll (mgraft⊢ φ) ξ
mtrans⟨⊢⟩⋆ : ∀ {Δ Δ′ Δ″} → Δ″ ⟨⊢⟩⋆ ⌈ Δ′ ⌉ → Δ′ ⟨⊢⟩⋆ Δ → Δ″ ⟨⊢⟩⋆ Δ
mtrans⟨⊢⟩⋆ δ′ δ = mgraft⟨⊢⟩⋆ δ′ δ
mutual
infix 3 _⊢ⁿᶠ_
data _⊢ⁿᶠ_ : Cx → Ty → Set where
lamⁿᶠ : ∀ {Δ Γ A B} →
Δ ⁏ Γ , A ⊢ⁿᶠ B →
Δ ⁏ Γ ⊢ⁿᶠ A ⇒ B
boxⁿᶠ : ∀ {Δ Γ Φ A} →
Δ ⟨⊢⟩ [ Φ ] A →
Δ ⁏ Γ ⊢ⁿᶠ [ Φ ] A
neⁿᶠ : ∀ {Δ Γ A} →
Δ ⁏ Γ ⊢ⁿᵉ A →
Δ ⁏ Γ ⊢ⁿᶠ A
infix 3 _⊢ⁿᵉ_
data _⊢ⁿᵉ_ : Cx → Ty → Set where
varⁿᵉ : ∀ {Δ Γ A} →
Γ ∋ A →
Δ ⁏ Γ ⊢ⁿᵉ A
mvarⁿᵉ : ∀ {Δ Γ A} →
Δ ∋ A →
Δ ⁏ Γ ⊢ⁿᵉ A
appⁿᵉ : ∀ {Δ Γ A B} →
Δ ⁏ Γ ⊢ⁿᵉ A ⇒ B → Δ ⁏ Γ ⊢ⁿᶠ A →
Δ ⁏ Γ ⊢ⁿᵉ B
unboxⁿᵉ : ∀ {Δ Γ Φ A C} →
Δ ⟨⊢⟩⋆ⁿᶠ ⌈ Φ ⌉ → Δ ⁏ Γ ⊢ⁿᵉ [ Φ ] A → Δ , [ Φ ] A ⁏ Γ ⊢ⁿᶠ C →
Δ ⁏ Γ ⊢ⁿᵉ C
infix 3 _⟨⊢⟩ⁿᶠ_
_⟨⊢⟩ⁿᶠ_ : Ty⋆ → BoxTy → Set
Δ ⟨⊢⟩ⁿᶠ [ Φ ] A = Δ ⧺ Φ ⁏ ∅ ⊢ⁿᶠ A
infix 3 _⟨⊢⟩⋆ⁿᶠ_
_⟨⊢⟩⋆ⁿᶠ_ : Ty⋆ → BoxTy⋆ → Set
Δ ⟨⊢⟩⋆ⁿᶠ Ξ = All (Δ ⟨⊢⟩ⁿᶠ_) Ξ
mutual
mono⊢ⁿᶠ : ∀ {Δ Γ Δ′ Γ′ A} → Δ′ ⊇ Δ → Γ′ ⊇ Γ → Δ ⁏ Γ ⊢ⁿᶠ A → Δ′ ⁏ Γ′ ⊢ⁿᶠ A
mono⊢ⁿᶠ ζ η (lamⁿᶠ 𝒟) = lamⁿᶠ (mono⊢ⁿᶠ ζ (lift η) 𝒟)
mono⊢ⁿᶠ ζ η (boxⁿᶠ {Φ = Φ} 𝒟) = boxⁿᶠ (mono⟨⊢⟩ {Φ} ζ 𝒟)
mono⊢ⁿᶠ ζ η (neⁿᶠ 𝒟) = neⁿᶠ (mono⊢ⁿᵉ ζ η 𝒟)
mono⊢ⁿᵉ : ∀ {Δ Γ Δ′ Γ′ A} → Δ′ ⊇ Δ → Γ′ ⊇ Γ → Δ ⁏ Γ ⊢ⁿᵉ A → Δ′ ⁏ Γ′ ⊢ⁿᵉ A
mono⊢ⁿᵉ ζ η (varⁿᵉ 𝒾) = varⁿᵉ (mono∋ η 𝒾)
mono⊢ⁿᵉ ζ η (mvarⁿᵉ 𝒾) = mvarⁿᵉ (mono∋ ζ 𝒾)
mono⊢ⁿᵉ ζ η (appⁿᵉ 𝒟 ℰ) = appⁿᵉ (mono⊢ⁿᵉ ζ η 𝒟) (mono⊢ⁿᶠ ζ η ℰ)
mono⊢ⁿᵉ ζ η (unboxⁿᵉ φ 𝒟 ℰ) = unboxⁿᵉ (mono⟨⊢⟩⋆ⁿᶠ ζ φ) (mono⊢ⁿᵉ ζ η 𝒟) (mono⊢ⁿᶠ (lift ζ) η ℰ)
mono⟨⊢⟩ⁿᶠ : ∀ {Φ Δ Δ′ A} → Δ′ ⊇ Δ → Δ ⟨⊢⟩ⁿᶠ [ Φ ] A → Δ′ ⟨⊢⟩ⁿᶠ [ Φ ] A
mono⟨⊢⟩ⁿᶠ {Φ} ζ 𝒟 = mono⊢ⁿᶠ (lift⊇⧺ ζ Φ) refl⊇ 𝒟
mono⟨⊢⟩⋆ⁿᶠ : ∀ {Ξ Δ Δ′} → Δ′ ⊇ Δ → Δ ⟨⊢⟩⋆ⁿᶠ Ξ → Δ′ ⟨⊢⟩⋆ⁿᶠ Ξ
mono⟨⊢⟩⋆ⁿᶠ {∅} ζ ∅ = ∅
mono⟨⊢⟩⋆ⁿᶠ {Ξ , [ Φ ] A} ζ (ξ , 𝒟) = mono⟨⊢⟩⋆ⁿᶠ ζ ξ , mono⟨⊢⟩ⁿᶠ {Φ} ζ 𝒟
mutual
idmono⊢ⁿᶠ : ∀ {Δ Γ A} → (𝒟 : Δ ⁏ Γ ⊢ⁿᶠ A) → mono⊢ⁿᶠ refl⊇ refl⊇ 𝒟 ≡ 𝒟
idmono⊢ⁿᶠ (lamⁿᶠ 𝒟) = cong lamⁿᶠ (idmono⊢ⁿᶠ 𝒟)
idmono⊢ⁿᶠ (boxⁿᶠ {Φ = Φ} 𝒟) = cong boxⁿᶠ (idmono⟨⊢⟩ {Φ} 𝒟)
idmono⊢ⁿᶠ (neⁿᶠ 𝒟) = cong neⁿᶠ (idmono⊢ⁿᵉ 𝒟)
idmono⊢ⁿᵉ : ∀ {Δ Γ A} → (𝒟 : Δ ⁏ Γ ⊢ⁿᵉ A) → mono⊢ⁿᵉ refl⊇ refl⊇ 𝒟 ≡ 𝒟
idmono⊢ⁿᵉ (varⁿᵉ 𝒾) = cong varⁿᵉ (idmono∋ 𝒾)
idmono⊢ⁿᵉ (mvarⁿᵉ 𝒾) = cong mvarⁿᵉ (idmono∋ 𝒾)
idmono⊢ⁿᵉ (appⁿᵉ 𝒟 ℰ) = cong² appⁿᵉ (idmono⊢ⁿᵉ 𝒟) (idmono⊢ⁿᶠ ℰ)
idmono⊢ⁿᵉ (unboxⁿᵉ φ 𝒟 ℰ) = cong³ unboxⁿᵉ (idmono⟨⊢⟩⋆ⁿᶠ φ) (idmono⊢ⁿᵉ 𝒟) (idmono⊢ⁿᶠ ℰ)
idmono⟨⊢⟩ⁿᶠ : ∀ {Φ Δ A} → (𝒟 : Δ ⟨⊢⟩ⁿᶠ [ Φ ] A) → mono⟨⊢⟩ⁿᶠ {Φ} refl⊇ 𝒟 ≡ 𝒟
idmono⟨⊢⟩ⁿᶠ 𝒟 = idmono⊢ⁿᶠ 𝒟
idmono⟨⊢⟩⋆ⁿᶠ : ∀ {Ξ Δ} → (ξ : Δ ⟨⊢⟩⋆ⁿᶠ Ξ) → mono⟨⊢⟩⋆ⁿᶠ refl⊇ ξ ≡ ξ
idmono⟨⊢⟩⋆ⁿᶠ {∅} ∅ = refl
idmono⟨⊢⟩⋆ⁿᶠ {Ξ , [ Φ ] A} (ξ , 𝒟) = cong² _,_ (idmono⟨⊢⟩⋆ⁿᶠ ξ) (idmono⟨⊢⟩ⁿᶠ {Φ} 𝒟)
mutual
assocmono⊢ⁿᶠ : ∀ {Δ Γ Δ′ Γ′ Γ″ Δ″ A} →
(ζ′ : Δ″ ⊇ Δ′) (η′ : Γ″ ⊇ Γ′) (ζ : Δ′ ⊇ Δ) (η : Γ′ ⊇ Γ) (𝒟 : Δ ⁏ Γ ⊢ⁿᶠ A) →
mono⊢ⁿᶠ ζ′ η′ (mono⊢ⁿᶠ ζ η 𝒟) ≡ mono⊢ⁿᶠ (trans⊇ ζ′ ζ) (trans⊇ η′ η) 𝒟
assocmono⊢ⁿᶠ ζ′ η′ ζ η (lamⁿᶠ 𝒟) = cong lamⁿᶠ (assocmono⊢ⁿᶠ ζ′ (lift η′) ζ (lift η) 𝒟)
assocmono⊢ⁿᶠ ζ′ η′ ζ η (boxⁿᶠ {Φ = Φ} 𝒟) = cong boxⁿᶠ (assocmono⟨⊢⟩ {Φ} ζ′ ζ 𝒟)
assocmono⊢ⁿᶠ ζ′ η′ ζ η (neⁿᶠ 𝒟) = cong neⁿᶠ (assocmono⊢ⁿᵉ ζ′ η′ ζ η 𝒟)
assocmono⊢ⁿᵉ : ∀ {Δ Γ Δ′ Γ′ Γ″ Δ″ A} →
(ζ′ : Δ″ ⊇ Δ′) (η′ : Γ″ ⊇ Γ′) (ζ : Δ′ ⊇ Δ) (η : Γ′ ⊇ Γ) (𝒟 : Δ ⁏ Γ ⊢ⁿᵉ A) →
mono⊢ⁿᵉ ζ′ η′ (mono⊢ⁿᵉ ζ η 𝒟) ≡ mono⊢ⁿᵉ (trans⊇ ζ′ ζ) (trans⊇ η′ η) 𝒟
assocmono⊢ⁿᵉ ζ′ η′ ζ η (varⁿᵉ 𝒾) = cong varⁿᵉ (assocmono∋ η′ η 𝒾)
assocmono⊢ⁿᵉ ζ′ η′ ζ η (mvarⁿᵉ 𝒾) = cong mvarⁿᵉ (assocmono∋ ζ′ ζ 𝒾)
assocmono⊢ⁿᵉ ζ′ η′ ζ η (appⁿᵉ 𝒟 ℰ) = cong² appⁿᵉ (assocmono⊢ⁿᵉ ζ′ η′ ζ η 𝒟) (assocmono⊢ⁿᶠ ζ′ η′ ζ η ℰ)
assocmono⊢ⁿᵉ ζ′ η′ ζ η (unboxⁿᵉ φ 𝒟 ℰ) = cong³ unboxⁿᵉ (assocmono⟨⊢⟩⋆ⁿᶠ ζ′ ζ φ) (assocmono⊢ⁿᵉ ζ′ η′ ζ η 𝒟) (assocmono⊢ⁿᶠ (lift ζ′) η′ (lift ζ) η ℰ)
assocmono⟨⊢⟩ⁿᶠ : ∀ {Φ Δ Δ′ Δ″ A} →
(ζ′ : Δ″ ⊇ Δ′) (ζ : Δ′ ⊇ Δ) (𝒟 : Δ ⟨⊢⟩ⁿᶠ [ Φ ] A) →
mono⟨⊢⟩ⁿᶠ {Φ} ζ′ (mono⟨⊢⟩ⁿᶠ {Φ} ζ 𝒟) ≡ mono⟨⊢⟩ⁿᶠ {Φ} (trans⊇ ζ′ ζ) 𝒟
assocmono⟨⊢⟩ⁿᶠ {Φ} ζ′ ζ 𝒟 = assocmono⊢ⁿᶠ (lift⊇⧺ ζ′ Φ) refl⊇ (lift⊇⧺ ζ Φ) refl⊇ 𝒟
assocmono⟨⊢⟩⋆ⁿᶠ : ∀ {Ξ Δ Δ′ Δ″} →
(ζ′ : Δ″ ⊇ Δ′) (ζ : Δ′ ⊇ Δ) (ξ : Δ ⟨⊢⟩⋆ⁿᶠ Ξ) →
mono⟨⊢⟩⋆ⁿᶠ ζ′ (mono⟨⊢⟩⋆ⁿᶠ ζ ξ) ≡ mono⟨⊢⟩⋆ⁿᶠ (trans⊇ ζ′ ζ) ξ
assocmono⟨⊢⟩⋆ⁿᶠ {∅} ζ′ ζ ∅ = refl
assocmono⟨⊢⟩⋆ⁿᶠ {Ξ , [ Φ ] A} ζ′ ζ (ξ , 𝒟) = cong² _,_ (assocmono⟨⊢⟩⋆ⁿᶠ ζ′ ζ ξ) (assocmono⟨⊢⟩ⁿᶠ {Φ} ζ′ ζ 𝒟)
infix 3 _⊢⋆ⁿᵉ_
_⊢⋆ⁿᵉ_ : Cx → Ty⋆ → Set
Δ ⁏ Γ ⊢⋆ⁿᵉ Ξ = All (Δ ⁏ Γ ⊢ⁿᵉ_) Ξ
mono⊢⋆ⁿᵉ : ∀ {Δ Γ Δ′ Γ′ Ξ} → Δ′ ⊇ Δ → Γ′ ⊇ Γ → Δ ⁏ Γ ⊢⋆ⁿᵉ Ξ → Δ′ ⁏ Γ′ ⊢⋆ⁿᵉ Ξ
mono⊢⋆ⁿᵉ ζ η ξ = mapAll (mono⊢ⁿᵉ ζ η) ξ
v₀ : ∀ {Δ Γ A} →
Δ ⁏ Γ , A ⊢ A
v₀ = var zero
v₁ : ∀ {Δ Γ A B} →
Δ ⁏ Γ , A , B ⊢ A
v₁ = var (suc zero)
v₂ : ∀ {Δ Γ A B C} →
Δ ⁏ Γ , A , B , C ⊢ A
v₂ = var (suc (suc zero))
mv₀ : ∀ {Δ Γ A} →
Δ , A ⁏ Γ ⊢ A
mv₀ = mvar zero
mv₁ : ∀ {Δ Γ A B} →
Δ , A , B ⁏ Γ ⊢ A
mv₁ = mvar (suc zero)
mv₂ : ∀ {Δ Γ A B C} →
Δ , A , B , C ⁏ Γ ⊢ A
mv₂ = mvar (suc (suc zero))
iᶜ : ∀ {Δ Γ A} →
Δ ⁏ Γ ⊢ A ⇒ A
iᶜ = lam v₀
kᶜ : ∀ {Δ Γ A B} →
Δ ⁏ Γ ⊢ A ⇒ B ⇒ A
kᶜ = lam (lam v₁)
sᶜ : ∀ {Δ Γ A B C} →
Δ ⁏ Γ ⊢ (A ⇒ B ⇒ C) ⇒ (A ⇒ B) ⇒ A ⇒ C
sᶜ = lam (lam (lam
(app (app v₂ v₀) (app v₁ v₀))))
cᶜ : ∀ {Δ Γ A B C} →
Δ ⁏ Γ ⊢ (A ⇒ B ⇒ C) ⇒ B ⇒ A ⇒ C
cᶜ = lam (lam (lam
(app (app v₂ v₀) v₁)))
bᶜ : ∀ {Δ Γ A B C} →
Δ ⁏ Γ ⊢ (B ⇒ C) ⇒ (A ⇒ B) ⇒ A ⇒ C
bᶜ = lam (lam (lam
(app v₂ (app v₁ v₀))))
aᶜ : ∀ {Δ Γ A B} →
Δ ⁏ Γ ⊢ (A ⇒ A ⇒ B) ⇒ A ⇒ B
aᶜ = lam (lam
(app (app v₁ v₀) v₀))
dᶜ : ∀ {Δ Γ A B} →
Δ ⁏ Γ ⊢ [ ∅ ] (A ⇒ B) ⇒ [ ∅ ] A ⇒ [ ∅ ] B
dᶜ = lam (lam (unbox ∅ v₁ (unbox ∅ v₀
(box (app mv₁ mv₀)))))
4ᶜ : ∀ {Δ Γ A} →
Δ ⁏ Γ ⊢ [ ∅ ] A ⇒ [ ∅ ] [ ∅ ] A
4ᶜ = lam (unbox ∅ v₀
(box (box mv₀)))
tᶜ : ∀ {Δ Γ A} → Δ ⁏ Γ ⊢ [ ∅ ] A ⇒ A
tᶜ = lam (unbox ∅ v₀ mv₀)
exch : ∀ {Δ Γ A B C} →
Δ ⁏ Γ ⊢ A ⇒ B ⇒ C →
Δ ⁏ Γ ⊢ B ⇒ A ⇒ C
exch 𝒟 = app cᶜ 𝒟
comp : ∀ {Δ Γ A B C} →
Δ ⁏ Γ ⊢ B ⇒ C → Δ ⁏ Γ ⊢ A ⇒ B →
Δ ⁏ Γ ⊢ A ⇒ C
comp 𝒟 ℰ = app (app bᶜ 𝒟) ℰ
cont : ∀ {Δ Γ A B} →
Δ ⁏ Γ ⊢ A ⇒ A ⇒ B →
Δ ⁏ Γ ⊢ A ⇒ B
cont 𝒟 = app aᶜ 𝒟
mlam : ∀ {A B Γ Δ} →
Δ , A ⁏ Γ ⊢ B →
Δ ⁏ Γ ⊢ [ ∅ ] A ⇒ B
mlam 𝒟 = lam (unbox ∅ v₀ (mono⊢ refl⊇ (weak refl⊇) 𝒟))
det : ∀ {Δ Γ A B} →
Δ ⁏ Γ ⊢ A ⇒ B →
Δ ⁏ Γ , A ⊢ B
det 𝒟 = app (mono⊢ refl⊇ (weak refl⊇) 𝒟) v₀
mdet : ∀ {Δ Γ A B} →
Δ ⁏ Γ ⊢ [ ∅ ] A ⇒ B →
Δ , A ⁏ Γ ⊢ B
mdet 𝒟 = app (mono⊢ (weak refl⊇) refl⊇ 𝒟) (box mv₀)
dist : ∀ {Δ Γ A B} →
Δ ⁏ Γ ⊢ [ ∅ ] (A ⇒ B) → Δ ⁏ Γ ⊢ [ ∅ ] A →
Δ ⁏ Γ ⊢ [ ∅ ] B
dist 𝒟 ℰ = app (app dᶜ 𝒟) ℰ
wrap : ∀ {Δ Γ A} →
Δ ⁏ Γ ⊢ [ ∅ ] A →
Δ ⁏ Γ ⊢ [ ∅ ] [ ∅ ] A
wrap 𝒟 = app 4ᶜ 𝒟
eval : ∀ {Δ Γ A} →
Δ ⁏ Γ ⊢ [ ∅ ] A →
Δ ⁏ Γ ⊢ A
eval 𝒟 = app tᶜ 𝒟