{-# OPTIONS --rewriting #-}
module A201706.IMCLPSyntaxTerms where
open import A201706.IMCLP public
Cx : Nat → Nat → Set
Cx d g = BoxTy⋆ d ∧ Ty⋆ g
mutual
infix 3 _⊢_∷_
data _⊢_∷_ {d g} : Cx d g → Tm d g → Ty → Set where
var : ∀ {Δ Γ i A} →
Γ ∋⟨ i ⟩ A →
Δ ⁏ Γ ⊢ VAR i ∷ A
mvar : ∀ {`d Δ Γ q} {Φ : BoxTy⋆ `d} {i Q A} →
Δ ⁏ ∅ ⊢⧆ q ∷ Φ → Δ ∋⟨ i ⟩ [ Φ ⊦ Q ] A →
Δ ⁏ Γ ⊢ MVAR q i ∷ A
lam : ∀ {Δ Γ M A B} →
Δ ⁏ Γ , A ⊢ M ∷ B →
Δ ⁏ Γ ⊢ LAM M ∷ A ⇒ B
app : ∀ {Δ Γ M N A B} →
Δ ⁏ Γ ⊢ M ∷ A ⇒ B → Δ ⁏ Γ ⊢ N ∷ A →
Δ ⁏ Γ ⊢ APP M N ∷ B
box : ∀ {`d Δ Γ} {Φ : BoxTy⋆ `d} {M A} →
Φ ⁏ ∅ ⊢ M ∷ A →
Δ ⁏ Γ ⊢ BOX M ∷ [ Φ ⊦ M ] A
unbox : ∀ {`d Δ Γ} {Φ : BoxTy⋆ `d} {Q M N A C} →
Δ ⁏ Γ ⊢ M ∷ [ Φ ⊦ Q ] A → Δ , [ Φ ⊦ Q ] A ⁏ Γ ⊢ N ∷ C →
Δ ⁏ Γ ⊢ UNBOX M N ∷ C
infix 3 _⊢⧆_∷_
data _⊢⧆_∷_ {d g} : ∀ {n} → Cx d g → Tm⋆ d g n → BoxTy⋆ n → Set where
∅ : ∀ {Δ Γ} →
Δ ⁏ Γ ⊢⧆ ∅ ∷ ∅
_,_ : ∀ {`d n Δ Γ} {Φ : BoxTy⋆ `d} {x} {Ξ : BoxTy⋆ n} {M Q A} →
Δ ⁏ Γ ⊢⧆ x ∷ Ξ → Δ ⁏ Γ ⊢ M ∷ [ Φ ⊦ Q ] A →
Δ ⁏ Γ ⊢⧆ x , M ∷ Ξ , [ Φ ⊦ Q ] A
infix 3 _⊢⋆_∷_
data _⊢⋆_∷_ {d g} : ∀ {n} → Cx d g → Tm⋆ d g n → Ty⋆ n → Set where
∅ : ∀ {Δ Γ} →
Δ ⁏ Γ ⊢⋆ ∅ ∷ ∅
_,_ : ∀ {n Δ Γ x} {Ξ : Ty⋆ n} {M A} →
Δ ⁏ Γ ⊢⋆ x ∷ Ξ → Δ ⁏ Γ ⊢ M ∷ A →
Δ ⁏ Γ ⊢⋆ x , M ∷ Ξ , A
mutual
mono⊢ : ∀ {d g d′ g′} {Δ : BoxTy⋆ d} {Γ : Ty⋆ g} {Δ′ : BoxTy⋆ d′} {Γ′ : Ty⋆ g′} {M A z e} →
Δ′ ⊇⟨ z ⟩ Δ → Γ′ ⊇⟨ e ⟩ Γ → Δ ⁏ Γ ⊢ M ∷ A → Δ′ ⁏ Γ′ ⊢ monoTm z e M ∷ A
mono⊢ ζ η (var 𝒾) = var (mono∋ η 𝒾)
mono⊢ ζ η (mvar φ 𝒾) = mvar (mono⊢⧆ ζ done φ) (mono∋ ζ 𝒾)
mono⊢ ζ η (lam 𝒟) = lam (mono⊢ ζ (lift η) 𝒟)
mono⊢ ζ η (app 𝒟 ℰ) = app (mono⊢ ζ η 𝒟) (mono⊢ ζ η ℰ)
mono⊢ ζ η (box 𝒟) = box 𝒟
mono⊢ ζ η (unbox 𝒟 ℰ) = unbox (mono⊢ ζ η 𝒟) (mono⊢ (lift ζ) η ℰ)
mono⊢⧆ : ∀ {d g d′ g′ n} {Δ : BoxTy⋆ d} {Γ : Ty⋆ g} {Δ′ : BoxTy⋆ d′} {Γ′ : Ty⋆ g′} {x} {Ξ : BoxTy⋆ n} {z e} →
Δ′ ⊇⟨ z ⟩ Δ → Γ′ ⊇⟨ e ⟩ Γ → Δ ⁏ Γ ⊢⧆ x ∷ Ξ → Δ′ ⁏ Γ′ ⊢⧆ monoTm⋆ z e x ∷ Ξ
mono⊢⧆ ζ η ∅ = ∅
mono⊢⧆ ζ η (ξ , 𝒟) = mono⊢⧆ ζ η ξ , mono⊢ ζ η 𝒟
mono⊢⋆ : ∀ {d g d′ g′ n} {Δ : BoxTy⋆ d} {Γ : Ty⋆ g} {Δ′ : BoxTy⋆ d′} {Γ′ : Ty⋆ g′} {x} {Ξ : Ty⋆ n} {z e} →
Δ′ ⊇⟨ z ⟩ Δ → Γ′ ⊇⟨ e ⟩ Γ → Δ ⁏ Γ ⊢⋆ x ∷ Ξ → Δ′ ⁏ Γ′ ⊢⋆ monoTm⋆ z e x ∷ Ξ
mono⊢⋆ ζ η ∅ = ∅
mono⊢⋆ ζ η (ξ , 𝒟) = mono⊢⋆ ζ η ξ , mono⊢ ζ η 𝒟
refl⊢⋆ : ∀ {d g} {Δ : BoxTy⋆ d} {Γ : Ty⋆ g} → Δ ⁏ Γ ⊢⋆ reflTm⋆ ∷ Γ
refl⊢⋆ {Γ = ∅} = ∅
refl⊢⋆ {Γ = Γ , A} = mono⊢⋆ refl⊇ (weak refl⊇) refl⊢⋆ , var zero