module A201607.WIP2.BasicICML.Sketch2 where
open import A201607.BasicICML.Syntax.DyadicGentzen hiding (β ; π ; π) public
infixl 3 _+_
postulate
β : Ty
π π π π π : β {Ξ Ξ} β Ξ β Ξ β’ β
_+_ : β {Ξ Ξ} β Ξ β Ξ β’ β β Ξ β Ξ β’ β β Ξ β Ξ β’ β
eβ : β {Ξ Ξ} β Ξ , β β Ξ β’ β
eβ = π + π + vβ
neβ : β {Ξ Ξ} β Ξ , β β Ξ β’ β
neβ = π + vβ
qeβ : β {Ξ Ξ} β Ξ β Ξ β’ [ β
, β ] β
qeβ = box (π + π + vβ)
qneβ : β {Ξ Ξ} β Ξ β Ξ β’ [ β
, β ] β
qneβ = box (π + vβ)
eβ : β {Ξ Ξ} β Ξ β Ξ , [ β
] β β’ β
eβ = π + π + mvβ β
neβ : β {Ξ Ξ} β Ξ β Ξ , [ β
] β β’ β
neβ = π + mvβ β
qeβ : β {Ξ Ξ} β Ξ β Ξ , [ β
] β β’ [ β
] β
qeβ = box (π + π + mvβ β)
qneβ : β {Ξ Ξ} β Ξ β Ξ , [ β
] β β’ [ β
] β
qneβ = box (π + mvβ β)
eβ : β {Ξ Ξ} β Ξ β Ξ β’ β
eβ = unbox {Ξ¨ = β
} (box π) (π + π + mvβ β)
neβ : β {Ξ Ξ} β Ξ β Ξ β’ β
neβ = unbox {Ξ¨ = β
} (box π) (π + mvβ β)
qeβ : β {Ξ Ξ} β Ξ β Ξ β’ [ β
] β
qeβ = unbox {Ξ¨ = β
} (box π) (box (π + π + mvβ β))
qneβ : β {Ξ Ξ} β Ξ β Ξ β’ [ β
] β
qneβ = unbox {Ξ¨ = β
} (box π) (box (π + mvβ β))
qeβ : β {Ξ Ξ} β Ξ β Ξ β’ [ β
] β
qeβ = box (π + π + π)
qneβ : β {Ξ Ξ} β Ξ β Ξ β’ [ β
] β
qneβ = box (π + π)
qeβ
: β {Ξ Ξ} β Ξ β Ξ β’ [ β
] β
qeβ
= box π