module A201607.WIP.BasicICML.Sketch where
open import A201607.BasicICML.Syntax.DyadicGentzen hiding (dist ; up ; down)
dist : ∀ {Γ Δ Ψ A B}
→ Γ ⁏ Δ ⊢ [ Ψ ] (A ▻ B)
→ Γ ⁏ Δ ⊢ [ Ψ ] A
→ Γ ⁏ Δ ⊢ [ Ψ ] B
dist t u = unbox t (unbox (mmono⊢ weak⊆ u) (box (app (mv₁ refl⊢⋆) (mv₀ refl⊢⋆))))
up : ∀ {Γ Δ Ψ A}
→ Γ ⁏ Δ ⊢ [ Ψ ] A
→ Γ ⁏ Δ ⊢ [ Ψ ] [ Ψ ] A
up t = unbox t (box (box (mv₀ refl⊢⋆)))
down : ∀ {Γ Δ A}
→ Γ ⁏ Δ ⊢ [ Γ ] A
→ Γ ⁏ Δ ⊢ A
down t = unbox t (mv₀ refl⊢⋆)
module Test₁ where
def₁ : ∀ {Γ Δ A B} → Γ ⁏ Δ ⊢ A ∧ B ▻ B ∧ A
def₁ = lam (pair (snd v₀) (fst v₀))
def₀ : ∀ {Γ Δ A B C} → Γ ⁏ Δ ⊢ A ∧ (B ∧ C) ▻ (A ∧ B) ∧ C
def₀ = lam (pair (pair (fst v₀) (fst (snd v₀))) (snd (snd v₀)))
test : ∀ {Γ Δ A B C} → Γ ⁏ Δ ⊢ A ∧ (B ∧ C) ▻ C ∧ (A ∧ B)
test = lam (app def₁ (app def₀ v₀))
module Test₂ where
test : ∀ {Γ Δ A B C} → Γ ⁏ Δ ⊢ A ∧ (B ∧ C) ▻ C ∧ (A ∧ B)
test = let def₁ = lam (pair (snd v₀) (fst v₀)) in
let def₀ = lam (pair (pair (fst v₀) (fst (snd v₀))) (snd (snd v₀))) in
lam (app def₁ (app def₀ v₀))
module Test₃ where
𝑙𝑒𝑡_𝑖𝑛_ : ∀ {Γ Δ A C}
→ Γ ⁏ Δ ⊢ A
→ Γ ⁏ Δ , [ Γ ] A ⊢ C
→ Γ ⁏ Δ ⊢ C
𝑙𝑒𝑡 t 𝑖𝑛 u = unbox (box t) u
test : ∀ {Γ Δ A B C} → Γ ⁏ Δ ⊢ A ∧ (B ∧ C) ▻ C ∧ (A ∧ B)
test = 𝑙𝑒𝑡 lam (pair (snd v₀) (fst v₀)) 𝑖𝑛
𝑙𝑒𝑡 lam (pair (pair (fst v₀) (fst (snd v₀))) (snd (snd v₀))) 𝑖𝑛
lam (app (mv₁ (grefl⊢⋆ weak⊆)) (app (mv₀ (grefl⊢⋆ weak⊆)) v₀))
ifvar : ∀ {Γ Δ Ψ A C}
→ Γ ⁏ Δ ⊢ C
→ Γ ⁏ Δ ⊢ C
→ Γ ⁏ Δ ⊢ [ Ψ ] A
→ Γ ⁏ Δ ⊢ C
ifvar s₁ s₂ (box (var i)) = s₁
ifvar s₁ s₂ t = s₂
iflam : ∀ {Γ Δ Ψ A B C}
→ Γ ⁏ Δ ⊢ [ Ψ , A ] B ▻ C
→ Γ ⁏ Δ ⊢ C
→ Γ ⁏ Δ ⊢ [ Ψ ] (A ▻ B)
→ Γ ⁏ Δ ⊢ C
iflam s₁ s₂ (box (lam t)) = app s₁ (box t)
iflam s₁ s₂ t = s₂
ifapp : ∀ {Γ Δ Ψ B C}
→ (∀ {A} → Γ ⁏ Δ ⊢ [ Ψ ] (A ▻ B) ▻ [ Ψ ] A ▻ C)
→ Γ ⁏ Δ ⊢ C
→ Γ ⁏ Δ ⊢ [ Ψ ] B
→ Γ ⁏ Δ ⊢ C
ifapp s₁ s₂ (box (app t u)) = app (app s₁ (box t)) (box u)
ifapp s₁ s₂ t = s₂
ifpair : ∀ {Γ Δ Ψ A B C}
→ Γ ⁏ Δ ⊢ [ Ψ ] A ▻ [ Ψ ] B ▻ C
→ Γ ⁏ Δ ⊢ C
→ Γ ⁏ Δ ⊢ [ Ψ ] (A ∧ B)
→ Γ ⁏ Δ ⊢ C
ifpair s₁ s₂ (box (pair t u)) = app (app s₁ (box t)) (box u)
ifpair s₁ s₂ t = s₂
iffst : ∀ {Γ Δ Ψ A C}
→ (∀ {B} → Γ ⁏ Δ ⊢ [ Ψ ] (A ∧ B) ▻ C)
→ Γ ⁏ Δ ⊢ C
→ Γ ⁏ Δ ⊢ [ Ψ ] A
→ Γ ⁏ Δ ⊢ C
iffst s₁ s₂ (box (fst t)) = app s₁ (box t)
iffst s₁ s₂ t = s₂
ifsnd : ∀ {Γ Δ Ψ B C}
→ (∀ {A} → Γ ⁏ Δ ⊢ [ Ψ ] (A ∧ B) ▻ C)
→ Γ ⁏ Δ ⊢ C
→ Γ ⁏ Δ ⊢ [ Ψ ] B
→ Γ ⁏ Δ ⊢ C
ifsnd s₁ s₂ (box (snd t)) = app s₁ (box t)
ifsnd s₁ s₂ t = s₂
ifunit : ∀ {Γ Δ Ψ C}
→ Γ ⁏ Δ ⊢ C
→ Γ ⁏ Δ ⊢ C
→ Γ ⁏ Δ ⊢ [ Ψ ] ⊤
→ Γ ⁏ Δ ⊢ C
ifunit s₁ s₂ (box unit) = s₁
ifunit s₁ s₂ t = s₂