module A201607.OlderBasicILP.Direct.Hilbert.Nested where
open import A201607.Common.Context public
mutual
infixr 10 _⦂_
infixl 9 _∧_
infixr 7 _▻_
data Ty : Set where
α_ : Atom → Ty
_▻_ : Ty → Ty → Ty
_⦂_ : Box → Ty → Ty
_∧_ : Ty → Ty → Ty
⊤ : Ty
record Box : Set where
inductive
constructor [_]
field
{/A} : Ty
t : ∅ ⊢ /A
infix 3 _⊢_
data _⊢_ (Γ : Cx Ty) : Ty → Set where
var : ∀ {A} → A ∈ Γ → Γ ⊢ A
app : ∀ {A B} → Γ ⊢ A ▻ B → Γ ⊢ A → Γ ⊢ B
ci : ∀ {A} → Γ ⊢ A ▻ A
ck : ∀ {A B} → Γ ⊢ A ▻ B ▻ A
cs : ∀ {A B C} → Γ ⊢ (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
box : ∀ {A} → (t : ∅ ⊢ A) → Γ ⊢ [ t ] ⦂ A
cdist : ∀ {A B} {t : ∅ ⊢ A ▻ B} {u : ∅ ⊢ A}
→ Γ ⊢ [ t ] ⦂ (A ▻ B) ▻ [ u ] ⦂ A ▻ [ app t u ] ⦂ B
cup : ∀ {A} {t : ∅ ⊢ A} → Γ ⊢ [ t ] ⦂ A ▻ [ box t ] ⦂ [ t ] ⦂ A
cdown : ∀ {A} {t : ∅ ⊢ A} → Γ ⊢ [ t ] ⦂ A ▻ A
cpair : ∀ {A B} → Γ ⊢ A ▻ B ▻ A ∧ B
cfst : ∀ {A B} → Γ ⊢ A ∧ B ▻ A
csnd : ∀ {A B} → Γ ⊢ A ∧ B ▻ B
unit : Γ ⊢ ⊤
infix 3 _⊢⋆_
_⊢⋆_ : Cx Ty → Cx Ty → Set
Γ ⊢⋆ ∅ = 𝟙
Γ ⊢⋆ Ξ , A = Γ ⊢⋆ Ξ × Γ ⊢ A
infix 7 _▻◅_
_▻◅_ : Ty → Ty → Ty
A ▻◅ B = (A ▻ B) ∧ (B ▻ A)
_⦂⋆_ : ∀ {n} → VCx Box n → VCx Ty n → Cx Ty
∅ ⦂⋆ ∅ = ∅
(ts , t) ⦂⋆ (Ξ , A) = (ts ⦂⋆ Ξ) , (t ⦂ A)
mono⊢ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢ A → Γ′ ⊢ A
mono⊢ η (var i) = var (mono∈ η i)
mono⊢ η (app t u) = app (mono⊢ η t) (mono⊢ η u)
mono⊢ η ci = ci
mono⊢ η ck = ck
mono⊢ η cs = cs
mono⊢ η (box t) = box t
mono⊢ η cdist = cdist
mono⊢ η cup = cup
mono⊢ η cdown = cdown
mono⊢ η cpair = cpair
mono⊢ η cfst = cfst
mono⊢ η csnd = csnd
mono⊢ η unit = unit
mono⊢⋆ : ∀ {Ξ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢⋆ Ξ → Γ′ ⊢⋆ Ξ
mono⊢⋆ {∅} η ∙ = ∙
mono⊢⋆ {Ξ , A} η (ts , t) = mono⊢⋆ η ts , mono⊢ η t
v₀ : ∀ {A Γ} → Γ , A ⊢ A
v₀ = var i₀
v₁ : ∀ {A B Γ} → (Γ , A) , B ⊢ A
v₁ = var i₁
v₂ : ∀ {A B C Γ} → ((Γ , A) , B) , C ⊢ A
v₂ = var i₂
refl⊢⋆ : ∀ {Γ} → Γ ⊢⋆ Γ
refl⊢⋆ {∅} = ∙
refl⊢⋆ {Γ , A} = mono⊢⋆ weak⊆ refl⊢⋆ , v₀
lam : ∀ {A B Γ} → Γ , A ⊢ B → Γ ⊢ A ▻ B
lam (var top) = ci
lam (var (pop i)) = app ck (var i)
lam (app t u) = app (app cs (lam t)) (lam u)
lam ci = app ck ci
lam ck = app ck ck
lam cs = app ck cs
lam (box t) = app ck (box t)
lam cdist = app ck cdist
lam cup = app ck cup
lam cdown = app ck cdown
lam cpair = app ck cpair
lam cfst = app ck cfst
lam csnd = app ck csnd
lam unit = app ck unit
det : ∀ {A B Γ} → Γ ⊢ A ▻ B → Γ , A ⊢ B
det t = app (mono⊢ weak⊆ t) v₀
cut : ∀ {A B Γ} → Γ ⊢ A → Γ , A ⊢ B → Γ ⊢ B
cut t u = app (lam u) t
multicut : ∀ {Ξ A Γ} → Γ ⊢⋆ Ξ → Ξ ⊢ A → Γ ⊢ A
multicut {∅} ∙ u = mono⊢ bot⊆ u
multicut {Ξ , B} (ts , t) u = app (multicut ts (lam u)) t
trans⊢⋆ : ∀ {Γ″ Γ′ Γ} → Γ ⊢⋆ Γ′ → Γ′ ⊢⋆ Γ″ → Γ ⊢⋆ Γ″
trans⊢⋆ {∅} ts ∙ = ∙
trans⊢⋆ {Γ″ , A} ts (us , u) = trans⊢⋆ ts us , multicut ts u
ccont : ∀ {A B Γ} → Γ ⊢ (A ▻ A ▻ B) ▻ A ▻ B
ccont = lam (lam (app (app v₁ v₀) v₀))
cont : ∀ {A B Γ} → Γ , A , A ⊢ B → Γ , A ⊢ B
cont t = det (app ccont (lam (lam t)))
cexch : ∀ {A B C Γ} → Γ ⊢ (A ▻ B ▻ C) ▻ B ▻ A ▻ C
cexch = lam (lam (lam (app (app v₂ v₀) v₁)))
exch : ∀ {A B C Γ} → Γ , A , B ⊢ C → Γ , B , A ⊢ C
exch t = det (det (app cexch (lam (lam t))))
ccomp : ∀ {A B C Γ} → Γ ⊢ (B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
ccomp = lam (lam (lam (app v₂ (app v₁ v₀))))
comp : ∀ {A B C Γ} → Γ , B ⊢ C → Γ , A ⊢ B → Γ , A ⊢ C
comp t u = det (app (app ccomp (lam t)) (lam u))
dist : ∀ {A B Γ} {t : ∅ ⊢ A ▻ B} {u : ∅ ⊢ A}
→ Γ ⊢ [ t ] ⦂ (A ▻ B) → Γ ⊢ [ u ] ⦂ A
→ Γ ⊢ [ app t u ] ⦂ B
dist t u = app (app cdist t) u
up : ∀ {A Γ} {t : ∅ ⊢ A}
→ Γ ⊢ [ t ] ⦂ A
→ Γ ⊢ [ box t ] ⦂ [ t ] ⦂ A
up t = app cup t
down : ∀ {A Γ} {t : ∅ ⊢ A}
→ Γ ⊢ [ t ] ⦂ A
→ Γ ⊢ A
down t = app cdown t
distup : ∀ {A B Γ} {u : ∅ ⊢ A} {t : ∅ ⊢ [ u ] ⦂ A ▻ B}
→ Γ ⊢ [ t ] ⦂ ([ u ] ⦂ A ▻ B) → Γ ⊢ [ u ] ⦂ A
→ Γ ⊢ [ app t (box u) ] ⦂ B
distup t u = dist t (up u)
unbox : ∀ {A C Γ} {t : ∅ ⊢ A} {u : ∅ ⊢ C}
→ Γ ⊢ [ t ] ⦂ A → Γ , [ t ] ⦂ A ⊢ [ u ] ⦂ C
→ Γ ⊢ [ u ] ⦂ C
unbox t u = app (lam u) t
distup′ : ∀ {A B Γ} {u : ∅ ⊢ A} {t : ∅ , [ u ] ⦂ A ⊢ B}
→ Γ ⊢ [ lam t ] ⦂ ([ u ] ⦂ A ▻ B) → Γ ⊢ [ u ] ⦂ A
→ Γ ⊢ [ app (lam t) (box u) ] ⦂ B
distup′ t u = dist t (up u)
pair : ∀ {A B Γ} → Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ∧ B
pair t u = app (app cpair t) u
fst : ∀ {A B Γ} → Γ ⊢ A ∧ B → Γ ⊢ A
fst t = app cfst t
snd : ∀ {A B Γ} → Γ ⊢ A ∧ B → Γ ⊢ B
snd t = app csnd t
concat : ∀ {A B Γ} Γ′ → Γ , A ⊢ B → Γ′ ⊢ A → Γ ⧺ Γ′ ⊢ B
concat Γ′ t u = app (mono⊢ (weak⊆⧺₁ Γ′) (lam t)) (mono⊢ weak⊆⧺₂ u)