module A201607.OlderBasicILP.Direct.Gentzen where

open import A201607.Common.Context public


-- Propositions of intuitionistic logic of proofs, without ∨, ⊥, or +.

mutual
  infixr 10 _⦂_
  infixl 9 _∧_
  infixr 7 _▻_
  data Ty : Set where
    α_  : Atom  Ty
    _▻_ : Ty  Ty  Ty
    _⦂_ : Box  Ty  Ty
    _∧_ : Ty  Ty  Ty
      : Ty

  record Box : Set where
    inductive
    constructor [_]
    field
      {/A} : Ty
      t    :   /A

  _⦂⋆_ :  {n}  VCx Box n  VCx Ty n  Cx Ty
          ⦂⋆        = 
  (ts , t) ⦂⋆ (Ξ , A) = (ts ⦂⋆ Ξ) , (t  A)


  -- Derivations, as Gentzen-style natural deduction trees.

  infix 3 _⊢_
  data _⊢_ (Γ : Cx Ty) : Ty  Set where
    var      :  {A}               A  Γ  Γ  A
    lam      :  {A B}             Γ , A  B  Γ  A  B
    app      :  {A B}             Γ  A  B  Γ  A  Γ  B
--    multibox : ∀ {n A} {[ss] : VCx Box n} {Ξ : VCx Ty n}
--               → Γ ⊢⋆ [ss] ⦂⋆ Ξ → (u : [ss] ⦂⋆ Ξ ⊢ A)
--               → Γ ⊢ [ u ] ⦂ A
    down     :  {A} {t :   A}  Γ  [ t ]  A  Γ  A
    pair     :  {A B}             Γ  A  Γ  B  Γ  A  B
    fst      :  {A B}             Γ  A  B  Γ  A
    snd      :  {A B}             Γ  A  B  Γ  B
    unit     : Γ  

  infix 3 _⊢⋆_
  _⊢⋆_ : Cx Ty  Cx Ty  Set
  Γ ⊢⋆      = 𝟙
  Γ ⊢⋆ Ξ , A = Γ ⊢⋆ Ξ × Γ  A

infix 7 _▻◅_
_▻◅_ : Ty  Ty  Ty
A ▻◅ B = (A  B)  (B  A)


-- Monotonicity with respect to context inclusion.

mutual
  mono⊢ :  {A Γ Γ′}  Γ  Γ′  Γ  A  Γ′  A
  mono⊢ η (var i)         = var (mono∈ η i)
  mono⊢ η (lam t)         = lam (mono⊢ (keep η) t)
  mono⊢ η (app t u)       = app (mono⊢ η t) (mono⊢ η u)
--  mono⊢ η (multibox ts u) = multibox (mono⊢⋆ η ts) u
  mono⊢ η (down t)        = down (mono⊢ η t)
  mono⊢ η (pair t u)      = pair (mono⊢ η t) (mono⊢ η u)
  mono⊢ η (fst t)         = fst (mono⊢ η t)
  mono⊢ η (snd t)         = snd (mono⊢ η t)
  mono⊢ η unit            = unit

  mono⊢⋆ :  {Ξ Γ Γ′}  Γ  Γ′  Γ ⊢⋆ Ξ  Γ′ ⊢⋆ Ξ
  mono⊢⋆ {}     η         = 
  mono⊢⋆ {Ξ , A} η (ts , t) = mono⊢⋆ η ts , mono⊢ η t


-- Shorthand for variables.

v₀ :  {A Γ}  Γ , A  A
v₀ = var i₀

v₁ :  {A B Γ}  (Γ , A) , B  A
v₁ = var i₁

v₂ :  {A B C Γ}  ((Γ , A) , B) , C  A
v₂ = var i₂


-- Reflexivity.

refl⊢⋆ :  {Γ}  Γ ⊢⋆ Γ
refl⊢⋆ {}     = 
refl⊢⋆ {Γ , A} = mono⊢⋆ weak⊆ refl⊢⋆ , v₀


-- Deduction theorem is built-in.

-- Detachment theorem.

det :  {A B Γ}  Γ  A  B  Γ , A  B
det t = app (mono⊢ weak⊆ t) v₀


-- Cut and multicut.

cut :  {A B Γ}  Γ  A  Γ , A  B  Γ  B
cut t u = app (lam u) t

multicut :  {Ξ A Γ}  Γ ⊢⋆ Ξ  Ξ  A  Γ  A
multicut {}             u = mono⊢ bot⊆ u
multicut {Ξ , B} (ts , t) u = app (multicut ts (lam u)) t


-- Transitivity.

trans⊢⋆ :  {Γ″ Γ′ Γ}  Γ ⊢⋆ Γ′  Γ′ ⊢⋆ Γ″  Γ ⊢⋆ Γ″
trans⊢⋆ {}      ts         = 
trans⊢⋆ {Γ″ , A} ts (us , u) = trans⊢⋆ ts us , multicut ts u


-- Contraction.

ccont :  {A B Γ}  Γ  (A  A  B)  A  B
ccont = lam (lam (app (app v₁ v₀) v₀))

cont :  {A B Γ}  Γ , A , A  B  Γ , A  B
cont t = det (app ccont (lam (lam t)))


-- Exchange, or Schönfinkel’s C combinator.

cexch :  {A B C Γ}  Γ  (A  B  C)  B  A  C
cexch = lam (lam (lam (app (app v₂ v₀) v₁)))

exch :  {A B C Γ}  Γ , A , B  C  Γ , B , A  C
exch t = det (det (app cexch (lam (lam t))))


-- Composition, or Schönfinkel’s B combinator.

ccomp :  {A B C Γ}  Γ  (B  C)  (A  B)  A  C
ccomp = lam (lam (lam (app v₂ (app v₁ v₀))))

comp :  {A B C Γ}  Γ , B  C  Γ , A  B  Γ , A  C
comp t u = det (app (app ccomp (lam t)) (lam u))


-- Useful theorems in functional form.

-- dist : ∀ {A B Ψ Γ} {t : Ψ ⊢ A ▻ B} {u : Ψ ⊢ A}
--        → Γ ⊢ [ t ] ⦂ (A ▻ B) → Γ ⊢ [ u ] ⦂ A
--        → Γ ⊢ [ app (down v₁) (down v₀) ] ⦂ B
-- dist t u = multibox ((∙ , t) , u) (app (down v₁) (down v₀))
--
-- up : ∀ {A Ψ Γ} {t : Ψ ⊢ A}
--      → Γ ⊢ [ t ] ⦂ A
--      → Γ ⊢ [ v₀ ] ⦂ [ t ] ⦂ A
-- up t = multibox (∙ , t) v₀
--
-- distup : ∀ {A B Ψ Γ} {u : Ψ ⊢ A} {t : ∅ , [ u ] ⦂ A ⊢ [ u ] ⦂ A ▻ B}
--          → Γ ⊢ [ t ] ⦂ ([ u ] ⦂ A ▻ B) → Γ ⊢ [ u ] ⦂ A
--          → Γ ⊢ [ app (down v₁) (down v₀) ] ⦂ B
-- distup t u = dist t (up u)
--
-- box : ∀ {A Γ}
--       → (t : ∅ ⊢ A)
--       → Γ ⊢ [ t ] ⦂ A
-- box t = multibox ∙ t

unbox :  {A C Γ} {t :   A} {u :   C}
         Γ  [ t ]  A  Γ , [ t ]  A  [ u ]  C
         Γ  [ u ]  C
unbox t u = app (lam u) t


-- Useful theorems in combinatory form.

ci :  {A Γ}  Γ  A  A
ci = lam v₀

ck :  {A B Γ}  Γ  A  B  A
ck = lam (lam v₁)

cs :  {A B C Γ}  Γ  (A  B  C)  (A  B)  A  C
cs = lam (lam (lam (app (app v₂ v₀) (app v₁ v₀))))

-- cdist : ∀ {A B Ψ Γ} {t : Ψ ⊢ A ▻ B} {u : Ψ ⊢ A}
--         → Γ ⊢ [ t ] ⦂ (A ▻ B) ▻ [ u ] ⦂ A ▻ [ app (down v₁) (down v₀) ] ⦂ B
-- cdist = lam (lam (dist v₁ v₀))
--
-- cup : ∀ {A Ψ Γ} {t : Ψ ⊢ A} → Γ ⊢ [ t ] ⦂ A ▻ [ v₀ ] ⦂ [ t ] ⦂ A
-- cup = lam (up v₀)

cdown :  {A Γ} {t :   A}  Γ  [ t ]  A  A
cdown = lam (down v₀)

-- cdistup : ∀ {A B Ψ Γ} {u : Ψ ⊢ A} {t : ∅ , [ u ] ⦂ A ⊢ [ u ] ⦂ A ▻ B}
--           → Γ ⊢ [ t ] ⦂ ([ u ] ⦂ A ▻ B) ▻ [ u ] ⦂ A ▻ [ app (down v₁) (down v₀) ] ⦂ B
-- cdistup = lam (lam (dist v₁ (up v₀)))

cunbox :  {A C Γ} {t :   A} {u :   C}
          Γ  [ t ]  A  ([ t ]  A  C)  C
cunbox = lam (lam (app v₀ v₁))

cpair :  {A B Γ}  Γ  A  B  A  B
cpair = lam (lam (pair v₁ v₀))

cfst :  {A B Γ}  Γ  A  B  A
cfst = lam (fst v₀)

csnd :  {A B Γ}  Γ  A  B  B
csnd = lam (snd v₀)


-- Closure under context concatenation.

concat :  {A B Γ} Γ′  Γ , A  B  Γ′  A  Γ  Γ′  B
concat Γ′ t u = app (mono⊢ (weak⊆⧺₁ Γ′) (lam t)) (mono⊢ weak⊆⧺₂ u)


-- Substitution.

mutual
  [_≔_]_ :  {A B Γ}  (i : A  Γ)  Γ  i  A  Γ  B  Γ  i  B
  [ i  s ] var j         with i ≟∈ j
  [ i  s ] var .i        | same   = s
  [ i  s ] var ._        | diff j = var j
  [ i  s ] lam t         = lam ([ pop i  mono⊢ weak⊆ s ] t)
  [ i  s ] app t u       = app ([ i  s ] t) ([ i  s ] u)
--  [ i ≔ s ] multibox ts u = multibox ([ i ≔ s ]⋆ ts) u
  [ i  s ] down t        = down ([ i  s ] t)
  [ i  s ] pair t u      = pair ([ i  s ] t) ([ i  s ] u)
  [ i  s ] fst t         = fst ([ i  s ] t)
  [ i  s ] snd t         = snd ([ i  s ] t)
  [ i  s ] unit          = unit

  [_≔_]⋆_ :  {Ξ A Γ}  (i : A  Γ)  Γ  i  A  Γ ⊢⋆ Ξ  Γ  i ⊢⋆ Ξ
  [_≔_]⋆_ {}     i s         = 
  [_≔_]⋆_ {Ξ , B} i s (ts , t) = [ i  s ]⋆ ts , [ i  s ] t