module A201607.IPC.Metatheory.Hilbert-BasicTarski where
open import A201607.IPC.Syntax.Hilbert public
open import A201607.IPC.Semantics.BasicTarski public
eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A
eval (var i) γ = lookup i γ
eval (app t u) γ = (eval t γ) (eval u γ)
eval ci γ = I
eval ck γ = K
eval cs γ = S
eval cpair γ = _,_
eval cfst γ = π₁
eval csnd γ = π₂
eval unit γ = ∙
eval cboom γ = elim𝟘
eval cinl γ = ι₁
eval cinr γ = ι₂
eval ccase γ = elim⊎
eval✓ : ∀ {{_ : Model}} {A Γ} {t t′ : Γ ⊢ A} → t ⋙ t′ → eval t ≡ eval t′
eval✓ refl⋙ = refl
eval✓ (trans⋙ p q) = trans (eval✓ p) (eval✓ q)
eval✓ (sym⋙ p) = sym (eval✓ p)
eval✓ (congapp⋙ {A} {B} p q) = cong² (_⟦$⟧_ {A} {B}) (eval✓ p) (eval✓ q)
eval✓ (congi⋙ p) = cong I (eval✓ p)
eval✓ (congk⋙ p q) = cong² K (eval✓ p) (eval✓ q)
eval✓ (congs⋙ {A} {B} {C} p q r) = cong³ (⟦S⟧ {A} {B} {C}) (eval✓ p) (eval✓ q) (eval✓ r)
eval✓ (congpair⋙ {A} {B} p q) = cong² (_⟦,⟧_ {A} {B}) (eval✓ p) (eval✓ q)
eval✓ (congfst⋙ {A} {B} p) = cong (⟦π₁⟧ {A} {B}) (eval✓ p)
eval✓ (congsnd⋙ {A} {B} p) = cong (⟦π₂⟧ {A} {B}) (eval✓ p)
eval✓ (congboom⋙ {C} p) = cong (⟦elim𝟘⟧ {C}) (eval✓ p)
eval✓ (conginl⋙ {A} {B} p) = cong (⟦ι₁⟧ {A} {B}) (eval✓ p)
eval✓ (conginr⋙ {A} {B} p) = cong (⟦ι₂⟧ {A} {B}) (eval✓ p)
eval✓ (congcase⋙ {A} {B} {C} p q r) = cong³ (⟦celim⊎⟧ {A} {B} {C}) (eval✓ p) (eval✓ q) (eval✓ r)
eval✓ beta▻ₖ⋙ = refl
eval✓ beta▻ₛ⋙ = refl
eval✓ beta∧₁⋙ = refl
eval✓ beta∧₂⋙ = refl
eval✓ eta∧⋙ = refl
eval✓ eta⊤⋙ = refl
eval✓ beta∨₁⋙ = refl
eval✓ beta∨₂⋙ = refl