module A201607.IPC.Metatheory.GentzenNormalForm-KripkeExploding where
open import A201607.IPC.Syntax.GentzenNormalForm public
open import A201607.IPC.Semantics.KripkeExploding public
eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A
eval (var i) γ = lookup i γ
eval (lam {A} {B} t) γ = return {A ▻ B} λ ξ a →
eval t (mono⊩⋆ ξ γ , a)
eval (app {A} {B} t u) γ = bind {A ▻ B} {B} (eval t γ) λ ξ f →
_⟪$⟫_ {A} {B} f (eval u (mono⊩⋆ ξ γ))
eval (pair {A} {B} t u) γ = return {A ∧ B} (eval t γ , eval u γ)
eval (fst {A} {B} t) γ = bind {A ∧ B} {A} (eval t γ) (K π₁)
eval (snd {A} {B} t) γ = bind {A ∧ B} {B} (eval t γ) (K π₂)
eval unit γ = return {⊤} ∙
eval (boom {C} t) γ = bind {⊥} {C} (eval t γ) (K elim𝟘)
eval (inl {A} {B} t) γ = return {A ∨ B} (ι₁ (eval t γ))
eval (inr {A} {B} t) γ = return {A ∨ B} (ι₂ (eval t γ))
eval (case {A} {B} {C} t u v) γ = bind {A ∨ B} {C} (eval t γ) λ ξ s → elim⊎ s
(λ a → eval u (mono⊩⋆ ξ γ , λ ξ′ k → a ξ′ k))
(λ b → eval v (mono⊩⋆ ξ γ , λ ξ′ k → b ξ′ k))
eval⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → Γ ⊨⋆ Ξ
eval⋆ {∅} ∙ γ = ∙
eval⋆ {Ξ , A} (ts , t) γ = eval⋆ ts γ , eval t γ
private
instance
canon : Model
canon = record
{ World = Cx Ty
; _≤_ = _⊆_
; refl≤ = refl⊆
; trans≤ = trans⊆
; _⊪ᵅ_ = λ Γ P → Γ ⊢ⁿᵉ α P
; mono⊪ᵅ = mono⊢ⁿᵉ
; _‼_ = λ Γ A → Γ ⊢ⁿᶠ A
}
mutual
reflectᶜ : ∀ {A Γ} → Γ ⊢ⁿᵉ A → Γ ⊩ A
reflectᶜ {α P} t = return {α P} t
reflectᶜ {A ▻ B} t = return {A ▻ B} λ η a →
reflectᶜ {B} (appⁿᵉ (mono⊢ⁿᵉ η t) (reifyᶜ {A} a))
reflectᶜ {A ∧ B} t = return {A ∧ B} (reflectᶜ {A} (fstⁿᵉ t) , reflectᶜ {B} (sndⁿᵉ t))
reflectᶜ {⊤} t = return {⊤} ∙
reflectᶜ {⊥} t = λ η k → neⁿᶠ (boomⁿᵉ (mono⊢ⁿᵉ η t))
reflectᶜ {A ∨ B} t = λ η k → neⁿᶠ (caseⁿᵉ (mono⊢ⁿᵉ η t)
(k weak⊆ (ι₁ (reflectᶜ {A} (varⁿᵉ top))))
(k weak⊆ (ι₂ (reflectᶜ {B} (varⁿᵉ top)))))
reifyᶜ : ∀ {A Γ} → Γ ⊩ A → Γ ⊢ⁿᶠ A
reifyᶜ {α P} k = k refl≤ λ η s → neⁿᶠ s
reifyᶜ {A ▻ B} k = k refl≤ λ η s → lamⁿᶠ (reifyᶜ {B} (s weak⊆ (reflectᶜ {A} (varⁿᵉ top))))
reifyᶜ {A ∧ B} k = k refl≤ λ η s → pairⁿᶠ (reifyᶜ {A} (π₁ s)) (reifyᶜ {B} (π₂ s))
reifyᶜ {⊤} k = k refl≤ λ η s → unitⁿᶠ
reifyᶜ {⊥} k = k refl≤ λ η ()
reifyᶜ {A ∨ B} k = k refl≤ λ η s → elim⊎ s
(λ a → inlⁿᶠ (reifyᶜ {A} (λ η′ k′ → a η′ k′)))
(λ b → inrⁿᶠ (reifyᶜ {B} (λ η′ k′ → b η′ k′)))
reflectᶜ⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ⁿᵉ Ξ → Γ ⊩⋆ Ξ
reflectᶜ⋆ {∅} ∙ = ∙
reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t
reifyᶜ⋆ : ∀ {Ξ Γ} → Γ ⊩⋆ Ξ → Γ ⊢⋆ⁿᶠ Ξ
reifyᶜ⋆ {∅} ∙ = ∙
reifyᶜ⋆ {Ξ , A} (ts , t) = reifyᶜ⋆ ts , reifyᶜ t
refl⊩⋆ : ∀ {Γ} → Γ ⊩⋆ Γ
refl⊩⋆ = reflectᶜ⋆ refl⊢⋆ⁿᵉ
trans⊩⋆ : ∀ {Γ Γ′ Γ″} → Γ ⊩⋆ Γ′ → Γ′ ⊩⋆ Γ″ → Γ ⊩⋆ Γ″
trans⊩⋆ ts us = eval⋆ (trans⊢⋆ (nf→tm⋆ (reifyᶜ⋆ ts)) (nf→tm⋆ (reifyᶜ⋆ us))) refl⊩⋆
quot : ∀ {A Γ} → Γ ⊨ A → Γ ⊢ A
quot s = nf→tm (reifyᶜ (s refl⊩⋆))
norm : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ A
norm = quot ∘ eval