module A201607.BasicIS4.Syntax.HilbertSequential where
open import A201607.BasicIS4.Syntax.Common public
infix 3 _⊦⊢_
data _⊦⊢_ (Γ : Cx Ty) : Cx Ty → Set where
nil : Γ ⊦⊢ ∅
var : ∀ {Ξ A} → A ∈ Γ → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , A
mp : ∀ {Ξ A B} → A ▻ B ∈ Ξ → A ∈ Ξ → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , B
ci : ∀ {Ξ A} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , A ▻ A
ck : ∀ {Ξ A B} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , A ▻ B ▻ A
cs : ∀ {Ξ A B C} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
nec : ∀ {Ξ Ξ′ A} → ∅ ⊦⊢ Ξ′ , A → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , □ A
cdist : ∀ {Ξ A B} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , □ (A ▻ B) ▻ □ A ▻ □ B
cup : ∀ {Ξ A} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , □ A ▻ □ □ A
cdown : ∀ {Ξ A} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , □ A ▻ A
cpair : ∀ {Ξ A B} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , A ▻ B ▻ A ∧ B
cfst : ∀ {Ξ A B} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , A ∧ B ▻ A
csnd : ∀ {Ξ A B} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , A ∧ B ▻ B
unit : ∀ {Ξ} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , ⊤
infix 3 _⊢_
_⊢_ : Cx Ty → Ty → Set
Γ ⊢ A = ∃ (λ Ξ → Γ ⊦⊢ Ξ , A)
mono⊦⊢ : ∀ {Ξ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊦⊢ Ξ → Γ′ ⊦⊢ Ξ
mono⊦⊢ η nil = nil
mono⊦⊢ η (var i ts) = var (mono∈ η i) (mono⊦⊢ η ts)
mono⊦⊢ η (mp i j ts) = mp i j (mono⊦⊢ η ts)
mono⊦⊢ η (ci ts) = ci (mono⊦⊢ η ts)
mono⊦⊢ η (ck ts) = ck (mono⊦⊢ η ts)
mono⊦⊢ η (cs ts) = cs (mono⊦⊢ η ts)
mono⊦⊢ η (nec ss ts) = nec ss (mono⊦⊢ η ts)
mono⊦⊢ η (cdist ts) = cdist (mono⊦⊢ η ts)
mono⊦⊢ η (cup ts) = cup (mono⊦⊢ η ts)
mono⊦⊢ η (cdown ts) = cdown (mono⊦⊢ η ts)
mono⊦⊢ η (cpair ts) = cpair (mono⊦⊢ η ts)
mono⊦⊢ η (cfst ts) = cfst (mono⊦⊢ η ts)
mono⊦⊢ η (csnd ts) = csnd (mono⊦⊢ η ts)
mono⊦⊢ η (unit ts) = unit (mono⊦⊢ η ts)
mono⊢ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢ A → Γ′ ⊢ A
mono⊢ η (Ξ , ts) = Ξ , mono⊦⊢ η ts
_⧺⊦_ : ∀ {Γ Ξ Ξ′} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ′ → Γ ⊦⊢ Ξ ⧺ Ξ′
us ⧺⊦ nil = us
us ⧺⊦ var i ts = var i (us ⧺⊦ ts)
us ⧺⊦ mp i j ts = mp (mono∈ weak⊆⧺₂ i) (mono∈ weak⊆⧺₂ j) (us ⧺⊦ ts)
us ⧺⊦ ci ts = ci (us ⧺⊦ ts)
us ⧺⊦ ck ts = ck (us ⧺⊦ ts)
us ⧺⊦ cs ts = cs (us ⧺⊦ ts)
us ⧺⊦ nec ss ts = nec ss (us ⧺⊦ ts)
us ⧺⊦ cdist ts = cdist (us ⧺⊦ ts)
us ⧺⊦ cup ts = cup (us ⧺⊦ ts)
us ⧺⊦ cdown ts = cdown (us ⧺⊦ ts)
us ⧺⊦ cpair ts = cpair (us ⧺⊦ ts)
us ⧺⊦ cfst ts = cfst (us ⧺⊦ ts)
us ⧺⊦ csnd ts = csnd (us ⧺⊦ ts)
us ⧺⊦ unit ts = unit (us ⧺⊦ ts)
app : ∀ {A B Γ} → Γ ⊢ A ▻ B → Γ ⊢ A → Γ ⊢ B
app {A} {B} (Ξ , ts) (Ξ′ , us) = Ξ″ , vs
where Ξ″ = (Ξ′ , A) ⧺ (Ξ , A ▻ B)
vs = mp top (mono∈ (weak⊆⧺₁ (Ξ , A ▻ B)) top) (us ⧺⊦ ts)
box : ∀ {A Γ} → ∅ ⊢ A → Γ ⊢ □ A
box (Ξ , ts) = ∅ , nec ts nil