module A201607.BasicIS4.Syntax.ClosedHilbert where
open import A201607.BasicIS4.Syntax.Common public
infix 3 ⊢_
data ⊢_ : Ty → Set where
app : ∀ {A B} → ⊢ A ▻ B → ⊢ A → ⊢ B
ci : ∀ {A} → ⊢ A ▻ A
ck : ∀ {A B} → ⊢ A ▻ B ▻ A
cs : ∀ {A B C} → ⊢ (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
box : ∀ {A} → ⊢ A → ⊢ □ A
cdist : ∀ {A B} → ⊢ □ (A ▻ B) ▻ □ A ▻ □ B
cup : ∀ {A} → ⊢ □ A ▻ □ □ A
cdown : ∀ {A} → ⊢ □ A ▻ A
cpair : ∀ {A B} → ⊢ A ▻ B ▻ A ∧ B
cfst : ∀ {A B} → ⊢ A ∧ B ▻ A
csnd : ∀ {A B} → ⊢ A ∧ B ▻ B
unit : ⊢ ⊤
infix 3 ⊢⋆_
⊢⋆_ : Cx Ty → Set
⊢⋆ ∅ = 𝟙
⊢⋆ Ξ , A = ⊢⋆ Ξ × ⊢ A
cut : ∀ {A B} → ⊢ A → ⊢ A ▻ B → ⊢ B
cut t u = app u t
multicut : ∀ {Ξ A} → ⊢⋆ Ξ → ⊢ Ξ ▻⋯▻ A → ⊢ A
multicut {∅} ∙ u = u
multicut {Ξ , B} (ts , t) u = app (multicut ts u) t
ccont : ∀ {A B} → ⊢ (A ▻ A ▻ B) ▻ A ▻ B
ccont = app (app cs cs) (app ck ci)
cont : ∀ {A B} → ⊢ A ▻ A ▻ B → ⊢ A ▻ B
cont t = app ccont t
cexch : ∀ {A B C} → ⊢ (A ▻ B ▻ C) ▻ B ▻ A ▻ C
cexch = app (app cs (app (app cs (app ck cs))
(app (app cs (app ck ck)) cs)))
(app ck ck)
exch : ∀ {A B C} → ⊢ A ▻ B ▻ C → ⊢ B ▻ A ▻ C
exch t = app cexch t
ccomp : ∀ {A B C} → ⊢ (B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
ccomp = app (app cs (app ck cs)) ck
comp : ∀ {A B C} → ⊢ B ▻ C → ⊢ A ▻ B → ⊢ A ▻ C
comp t u = app (app ccomp t) u
dist : ∀ {A B} → ⊢ □ (A ▻ B) → ⊢ □ A → ⊢ □ B
dist t u = app (app cdist t) u
up : ∀ {A} → ⊢ □ A → ⊢ □ □ A
up t = app cup t
down : ∀ {A} → ⊢ □ A → ⊢ A
down t = app cdown t
distup : ∀ {A B} → ⊢ □ (□ A ▻ B) → ⊢ □ A → ⊢ □ B
distup t u = dist t (up u)
pair : ∀ {A B} → ⊢ A → ⊢ B → ⊢ A ∧ B
pair t u = app (app cpair t) u
fst : ∀ {A B} → ⊢ A ∧ B → ⊢ A
fst t = app cfst t
snd : ∀ {A B} → ⊢ A ∧ B → ⊢ B
snd t = app csnd t
data _⋙_ : ∀ {A} → ⊢ A → ⊢ A → Set where
refl⋙ : ∀ {A} → {t : ⊢ A}
→ t ⋙ t
trans⋙ : ∀ {A} → {t t′ t″ : ⊢ A}
→ t ⋙ t′ → t′ ⋙ t″
→ t ⋙ t″
sym⋙ : ∀ {A} → {t t′ : ⊢ A}
→ t ⋙ t′
→ t′ ⋙ t
congapp⋙ : ∀ {A B} → {t t′ : ⊢ A ▻ B} → {u u′ : ⊢ A}
→ t ⋙ t′ → u ⋙ u′
→ app t u ⋙ app t′ u′
congi⋙ : ∀ {A} → {t t′ : ⊢ A}
→ t ⋙ t′
→ app ci t ⋙ app ci t′
congk⋙ : ∀ {A B} → {t t′ : ⊢ A} → {u u′ : ⊢ B}
→ t ⋙ t′ → u ⋙ u′
→ app (app ck t) u ⋙ app (app ck t′) u′
congs⋙ : ∀ {A B C} → {t t′ : ⊢ A ▻ B ▻ C} → {u u′ : ⊢ A ▻ B} → {v v′ : ⊢ A}
→ t ⋙ t′ → u ⋙ u′ → v ⋙ v′
→ app (app (app cs t) u) v ⋙ app (app (app cs t′) u′) v′
congdist⋙ : ∀ {A B} → {t t′ : ⊢ □ (A ▻ B)} → {u u′ : ⊢ □ A}
→ t ⋙ t′ → u ⋙ u′
→ app (app cdist t) u ⋙ app (app cdist t′) u′
congup⋙ : ∀ {A} → {t t′ : ⊢ □ A}
→ t ⋙ t′
→ app cup t ⋙ app cup t′
congdown⋙ : ∀ {A} → {t t′ : ⊢ □ A}
→ t ⋙ t′
→ app cdown t ⋙ app cdown t′
congpair⋙ : ∀ {A B} → {t t′ : ⊢ A} → {u u′ : ⊢ B}
→ t ⋙ t′ → u ⋙ u′
→ app (app cpair t) u ⋙ app (app cpair t′) u′
congfst⋙ : ∀ {A B} → {t t′ : ⊢ A ∧ B}
→ t ⋙ t′
→ app cfst t ⋙ app cfst t′
congsnd⋙ : ∀ {A B} → {t t′ : ⊢ A ∧ B}
→ t ⋙ t′
→ app csnd t ⋙ app csnd t′
beta▻ₖ⋙ : ∀ {A B} → {t : ⊢ A} → {u : ⊢ B}
→ app (app ck t) u ⋙ t
beta▻ₛ⋙ : ∀ {A B C} → {t : ⊢ A ▻ B ▻ C} → {u : ⊢ A ▻ B} → {v : ⊢ A}
→ app (app (app cs t) u) v ⋙ app (app t v) (app u v)
beta□⋙ : ∀ {A} → {t : ⊢ □ A}
→ down (up t) ⋙ t
eta□⋙ : ∀ {A} → {t : ⊢ A}
→ t ⋙ down (box t)
beta∧₁⋙ : ∀ {A B} → {t : ⊢ A} → {u : ⊢ B}
→ app cfst (app (app cpair t) u) ⋙ t
beta∧₂⋙ : ∀ {A B} → {t : ⊢ A} → {u : ⊢ B}
→ app csnd (app (app cpair t) u) ⋙ u
eta∧⋙ : ∀ {A B} → {t : ⊢ A ∧ B}
→ t ⋙ app (app cpair (app cfst t)) (app csnd t)
eta⊤⋙ : ∀ {t : ⊢ ⊤} → t ⋙ unit