-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇.
-- Tarski-style semantics with contexts as concrete worlds, and glueing for □ only.
-- Hilbert-style syntax.

module A201607.BasicIS4.Semantics.TarskiGluedHilbert where

open import A201607.BasicIS4.Syntax.Common public
open import A201607.Common.Semantics public


-- Intuitionistic Tarski models.

record Model : Set₁ where
  infix 3 _⊩ᵅ_ _[⊢]_
  field
    -- Forcing for atomic propositions; monotonic.
    _⊩ᵅ_   : Cx Ty  Atom  Set
    mono⊩ᵅ :  {P Γ Γ′}  Γ  Γ′  Γ ⊩ᵅ P  Γ′ ⊩ᵅ P

    -- Hilbert-style syntax representation; monotonic.
    _[⊢]_   : Cx Ty  Ty  Set
    mono[⊢] :  {A Γ Γ′}   Γ  Γ′  Γ [⊢] A  Γ′ [⊢] A
    [var]    :  {A Γ}      A  Γ  Γ [⊢] A
    [app]    :  {A B Γ}    Γ [⊢] A  B  Γ [⊢] A  Γ [⊢] B
    [ci]     :  {A Γ}      Γ [⊢] A  A
    [ck]     :  {A B Γ}    Γ [⊢] A  B  A
    [cs]     :  {A B C Γ}  Γ [⊢] (A  B  C)  (A  B)  A  C
    [box]    :  {A Γ}       [⊢] A  Γ [⊢]  A
    [cdist]  :  {A B Γ}    Γ [⊢]  (A  B)   A   B
    [cup]    :  {A Γ}      Γ [⊢]  A    A
    [cdown]  :  {A Γ}      Γ [⊢]  A  A
    [cpair]  :  {A B Γ}    Γ [⊢] A  B  A  B
    [cfst]   :  {A B Γ}    Γ [⊢] A  B  A
    [csnd]   :  {A B Γ}    Γ [⊢] A  B  B
    [unit]   :  {Γ}        Γ [⊢] 

open Model {{…}} public


-- Forcing in a particular model.

module _ {{_ : Model}} where
  infix 3 _⊩_
  _⊩_ : Cx Ty  Ty  Set
  Γ  α P   = Γ ⊩ᵅ P
  Γ  A  B =  {Γ′}  Γ  Γ′  Γ′  A  Γ′  B
  Γ   A   =  {Γ′}  Γ  Γ′  Glue (Γ′ [⊢]  A) (Γ′  A)
  Γ  A  B = Γ  A × Γ  B
  Γ      = 𝟙

  infix 3 _⊩⋆_
  _⊩⋆_ : Cx Ty  Cx Ty  Set
  Γ ⊩⋆      = 𝟙
  Γ ⊩⋆ Ξ , A = Γ ⊩⋆ Ξ × Γ  A


-- Monotonicity with respect to context inclusion.

module _ {{_ : Model}} where
  mono⊩ :  {A Γ Γ′}  Γ  Γ′  Γ  A  Γ′  A
  mono⊩ {α P}   η s = mono⊩ᵅ η s
  mono⊩ {A  B} η s = λ η′  s (trans⊆ η η′)
  mono⊩ { A}   η s = λ η′  s (trans⊆ η η′)
  mono⊩ {A  B} η s = mono⊩ {A} η (π₁ s) , mono⊩ {B} η (π₂ s)
  mono⊩ {}    η s = 

  mono⊩⋆ :  {Ξ Γ Γ′}  Γ  Γ′  Γ ⊩⋆ Ξ  Γ′ ⊩⋆ Ξ
  mono⊩⋆ {}     η         = 
  mono⊩⋆ {Ξ , A} η (ts , t) = mono⊩⋆ {Ξ} η ts , mono⊩ {A} η t


-- Additional useful equipment.

module _ {{_ : Model}} where
  _⟪$⟫_ :  {A B Γ}  Γ  A  B  Γ  A  Γ  B
  s ⟪$⟫ a = s refl⊆ a

  ⟪K⟫ :  {A B Γ}  Γ  A  Γ  B  A
  ⟪K⟫ {A} a η = K (mono⊩ {A} η a)

  ⟪S⟫ :  {A B C Γ}  Γ  A  B  C  Γ  A  B  Γ  A  Γ  C
  ⟪S⟫ {A} {B} {C} s₁ s₂ a = _⟪$⟫_ {B} {C} (_⟪$⟫_ {A} {B  C} s₁ a) (_⟪$⟫_ {A} {B} s₂ a)

  ⟪S⟫′ :  {A B C Γ}  Γ  A  B  C  Γ  (A  B)  A  C
  ⟪S⟫′ {A} {B} {C} s₁ η s₂ η′ a = let s₁′ = mono⊩ {A  B  C} (trans⊆ η η′) s₁
                                      s₂′ = mono⊩ {A  B} η′ s₂
                                  in  ⟪S⟫ {A} {B} {C} s₁′ s₂′ a

  _⟪D⟫_ :  {A B Γ}  Γ   (A  B)  Γ   A  Γ   B
  _⟪D⟫_ {A} {B} s₁ s₂ η = let t  s₁′ = s₁ η
                              u  a   = s₂ η
                          in  [app] ([app] [cdist] t) u  _⟪$⟫_ {A} {B} s₁′ a

  _⟪D⟫′_ :  {A B Γ}  Γ   (A  B)  Γ   A   B
  _⟪D⟫′_ {A} {B} s₁ η = _⟪D⟫_ (mono⊩ { (A  B)} η s₁)

  ⟪↑⟫ :  {A Γ}  Γ   A  Γ    A
  ⟪↑⟫ s η = [app] [cup] (syn (s η))  λ η′  s (trans⊆ η η′)

  ⟪↓⟫ :  {A Γ}  Γ   A  Γ  A
  ⟪↓⟫ s = sem (s refl⊆)

  _⟪,⟫′_ :  {A B Γ}  Γ  A  Γ  B  A  B
  _⟪,⟫′_ {A} {B} a η = _,_ (mono⊩ {A} η a)


-- Forcing in a particular world of a particular model, for sequents.

module _ {{_ : Model}} where
  infix 3 _⊩_⇒_
  _⊩_⇒_ : Cx Ty  Cx Ty  Ty  Set
  w  Γ  A = w ⊩⋆ Γ  w  A

  infix 3 _⊩_⇒⋆_
  _⊩_⇒⋆_ : Cx Ty  Cx Ty  Cx Ty  Set
  w  Γ ⇒⋆ Ξ = w ⊩⋆ Γ  w ⊩⋆ Ξ


-- Entailment, or forcing in all worlds of all models, for sequents.

infix 3 _⊨_
_⊨_ : Cx Ty  Ty  Set₁
Γ  A =  {{_ : Model}} {w : Cx Ty}  w  Γ  A

infix 3 _⊨⋆_
_⊨⋆_ : Cx Ty  Cx Ty  Set₁
Γ ⊨⋆ Ξ =  {{_ : Model}} {w : Cx Ty}  w  Γ ⇒⋆ Ξ


-- Additional useful equipment, for sequents.

module _ {{_ : Model}} where
  lookup :  {A Γ w}  A  Γ  w  Γ  A
  lookup top     (γ , a) = a
  lookup (pop i) (γ , b) = lookup i γ

  _⟦$⟧_ :  {A B Γ w}  w  Γ  A  B  w  Γ  A  w  Γ  B
  _⟦$⟧_ {A} {B} s₁ s₂ γ = _⟪$⟫_ {A} {B} (s₁ γ) (s₂ γ)

  ⟦K⟧ :  {A B Γ w}  w  Γ  A  w  Γ  B  A
  ⟦K⟧ {A} {B} a γ = ⟪K⟫ {A} {B} (a γ)

  ⟦S⟧ :  {A B C Γ w}  w  Γ  A  B  C  w  Γ  A  B  w  Γ  A  w  Γ  C
  ⟦S⟧ {A} {B} {C} s₁ s₂ a γ = ⟪S⟫ {A} {B} {C} (s₁ γ) (s₂ γ) (a γ)

  _⟦D⟧_ :  {A B Γ w}  w  Γ   (A  B)  w  Γ   A  w  Γ   B
  (s₁ ⟦D⟧ s₂) γ = (s₁ γ) ⟪D⟫ (s₂ γ)

  ⟦↑⟧ :  {A Γ w}  w  Γ   A  w  Γ    A
  ⟦↑⟧ s γ = ⟪↑⟫ (s γ)

  ⟦↓⟧ :  {A Γ w}  w  Γ   A  w  Γ  A
  ⟦↓⟧ s γ = ⟪↓⟫ (s γ)

  _⟦,⟧_ :  {A B Γ w}  w  Γ  A  w  Γ  B  w  Γ  A  B
  (a ⟦,⟧ b) γ = a γ , b γ

  ⟦π₁⟧ :  {A B Γ w}  w  Γ  A  B  w  Γ  A
  ⟦π₁⟧ s γ = π₁ (s γ)

  ⟦π₂⟧ :  {A B Γ w}  w  Γ  A  B  w  Γ  B
  ⟦π₂⟧ s γ = π₂ (s γ)